Spectra of Short Pulse Solutions of the Cubic–Quintic Complex Ginzburg–Landau Equation near Zero Dispersion

نویسندگان

  • Yannan Shen
  • John Zweck
  • Shaokang Wang
  • Curtis R. Menyuk
چکیده

We describe a computational method to compute spectra and slowly decaying eigenfunctions of linearizations of the cubic–quintic complex Ginzburg– Landau equation about numerically determined stationary solutions. We compare the results of the method to a formula for an edge bifurcation obtained using the small dissipation perturbation theory of Kapitula and Sandstede. This comparison highlights the importance for analytical studies of perturbed nonlinear wave equations of using a pulse ansatz in which the phase is not constant, but rather depends on the perturbation parameter. In the presence of large dissipative effects, we discover variations in the structure of the spectrum as the dispersion crosses zero that are not predicted by the small dissipation theory. In particular, in the normal dispersion regime we observe a jump in the number of discrete eigenvalues when a pair of real eigenvalues merges with the intersection point of the two branches of the continuous spectrum. Finally, we contrast the method to computational Evans function methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion

Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau equation ~CGLE! are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the parameter space in which stable pulselike solutions of the quintic CGLE exis...

متن کامل

Extreme amplitude pulse pairs in a laser model described by the Ginzburg-Landau equation

We have found new dissipative solitons of the complex cubic-quintic Ginzburg-Landau equation with extreme amplitudes and short duration. At certain range of the equation parameters, these extreme spikes appear in pairs of slightly unequal amplitude. The bifurcation diagram of pulse amplitude versus dispersion parameter is constructed. c © 2015 Optical Society of America OCIS codes: 060.5530, 14...

متن کامل

Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.

Approximate analytical chirped solitary pulse (chirped dissipative soliton) solutions of the one-dimensional complex cubic-quintic nonlinear Ginzburg-Landau equation are obtained. These solutions are stable and highly accurate under condition of domination of a normal dispersion over a spectral dissipation. The parametric space of the solitons is three-dimensional, that makes theirs to be easil...

متن کامل

Computation of Stationary Pulse Solutions of the Cubic-quintic Complex Ginzburg-landau Equation by a Perturbation-incremental Method

Stationary pulse solutions of the cubic-quintic complex Ginzburg-Landau equation are related to heteroclinic orbits in a three-dimensional dynamical systems and they are usually obtained using numerical simulation. The harmonic balance method has severe limitation in computing homoclinic/heteroclinic orbits since the period of such orbits is infinite. In this paper, we present a perturbation-in...

متن کامل

Chaotic Mode-locking of Chirped-pulse Oscillators

Chaotic mode-locking of chirped-pulse oscillator has been analyzed on the basis of generalized nonlinear cubic-quintic complex Ginzburg-Landau equation. It has been shown, that the chirped solitary pulse can be stabilized against the vacuum excitation, if the fourth-order dispersion is nonzero and positive. However, the pulse evolves chaotically, if the dispersion reaches some threshold value.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016