Class Association Rule Mining with Multiple Imbalanced Attributes
نویسندگان
چکیده
In this paper, we propose a novel framework to deal with data imbalance in class association rule mining. In each class association rule, the right-hand is a target class while the left-hand may contain one or more attributes. This framework is focused on the multiple imbalanced attributes on the left-hand. In the proposed framework, the rules with and without imbalanced attributes are processed in parallel. The rules without imbalanced attributes are mined through standard algorithm while the rules with imbalanced attributes are mined based on new defined measurements. Through simple transformation, these measurements can be in a uniform space so that only a few parameters need to be specified by user. In the case study, the proposed algorithm is applied into social security field. Although some attributes are severely imbalanced, the rules with minority of the imbalanced attributes have been mined efficiently.
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملIntelligent Rule Mining Algorithm for Classification over Imbalanced Data
Association rule mining for classification is a data mining technique for finding informative patterns from large datasets. Output is in the form of if-then rules containing attribute value combinations in antecedent and class label in the consequent. This method is popular for classification as rules are simple to understand and allow users to look into the factors leading to a specific class ...
متن کاملCombined Association Rule Mining
This paper proposes an algorithm to discover novel association rules, combined association rules. Compared with conventional association rule, this combined association rule allows users to perform actions directly. Combined association rules are always organized as rule sets, each of which is composed of a number of single combined association rules. These single rules consist of non-actionabl...
متن کاملUsing Semantic Data Mining for Classification Improvement and Knowledge Extraction
The objective of this position paper is to show that the integration of semantic data mining into the DAMIART data mining system can help further improve classification performance and knowledge extraction. DAMIART performs multi-label classification in the presence of multiple class ontologies, hierarchy extraction from multi-labels and concept relation by association rule mining. Whereas DAMI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007