An application of minimum classification error to feature space transformations for speech recognition
نویسندگان
چکیده
The use of signal transformations is a necessary step for feature extraction in pattern recognition systems. These transformations should take into account the main goal of pattern recognition: the error-rate minimization. In this paper we propose a new method to obtain feature space transformations based on the Minimum Classification Error criterion. The goal of these transformations is to obtain a new representation space where the Euclidean distance is optimal for classification. The proposed method is tested on a speech recognition system using different types of Hidden Markov Models. The comparison with standard pre-processing techniques shows that our method provides an error-rate reduction in all the performed experiments.
منابع مشابه
دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملNoise robustness of heterogeneous features employing minimum classification error feature space transformations
The use of heterogeneous features in automatic speech recognition has been shown to increase clean speech performance. This paper focuses on the noise robustness of systems with heterogeneous features. In particular a system where di erent features are extracted for di erent sets of phonemes. The employed features are computed by applying a linear transformation, estimated in a data-driven fash...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Speech Communication
دوره 20 شماره
صفحات -
تاریخ انتشار 1996