Fast robust subject-independent magnetoencephalographic source localization using an artificial neural network.
نویسندگان
چکیده
We describe a system that localizes a single dipole to reasonable accuracy from noisy magnetoencephalographic (MEG) measurements in real time. At its core is a multilayer perceptron (MLP) trained to map sensor signals and head position to dipole location. Including head position overcomes the previous need to retrain the MLP for each subject and session. The training dataset was generated by mapping randomly chosen dipoles and head positions through an analytic model and adding noise from real MEG recordings. After training, a localization took 0.7 ms with an average error of 0.90 cm. A few iterations of a Levenberg-Marquardt routine using the MLP output as its initial guess took 15 ms and improved accuracy to 0.53 cm, which approaches the natural limit on accuracy imposed by noise. We applied these methods to localize single dipole sources from MEG components isolated by blind source separation and compared the estimated locations to those generated by standard manually assisted commercial software.
منابع مشابه
Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملA METAHEURISTIC-BASED ARTIFICIAL NEURAL NETWORK FOR PLASTIC LIMIT ANALYSIS OF FRAMES
Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impre...
متن کاملDevelopment of an in-cylinder processes model of a CVVT gasoline engine using artificial neural network
Today, employing model based design approach in powertrain development is being paid more attention. Precise, meanwhile fast to run models are required for applying model based techniques in powertrain control design and engine calibration. In this paper, an in-cylinder process model of a CVVT gasoline engine is developed to be employed in extended mean valve control oriented model and also mod...
متن کاملFast robust MEG source localization using MLPs
Source localization from MEG data in real time requires algorithms which are robust, fully automatic, and very fast. We present two neural network systems which are able to localize a single dipole to reasonable accuracy within a fraction of a millisecond, even when the signals are contaminated by considerable noise. The first network is a multilayer perceptron (MLP) which takes the sensor meas...
متن کاملINTERVAL ARTIFICIAL NEURAL NETWORK BASED RESPONSE OF UNCERTAIN SYSTEM SUBJECT TO EARTHQUAKE MOTIONS
Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2005