Algorithms of Clustering and Classifying Batik Images Based on Color, Contrast and Motif
نویسندگان
چکیده
An interactive system could be provided for batik customers with the aim of helping them in selecting the right batiks. The system should manage a collection of batik images along with other information such as fashion color type, the contrast degree, and motif. This research aims to find methods of clustering and classifying batik images based on fashion color, contrast and motif. A color clustering algorithm using HSV color system is proposed. Two algorithms for contrast clustering, both utilize wavelet, are proposed. Six algorithms for clustering and classifying batik images based on group of motifs, employing shapeand texture-based techniques, are explored and proposed. Wavelet is used in image pre-processing, Canny detector is used to detect image edges. Experiments are conducted to evaluate the performance of the algorithms. The result of experiments shows that fashion color and contrast clustering algorithms perform quite well. Three of motif based clustering and classification algorithms perform fairly well, further work is needed to increase the accuracy and to refine the classification into detailed motif.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملContent based Batik Image Retrieval
Content Based Batik Image Retrieval (CBBIR) is an area of research that focuses on image processing based on characteristic motifs of batik. Basically the image has a unique batik motif compared with other images. Its uniqueness lies in the characteristics possessed texture and shape, which has a unique and distinct characteristics compared with other image characteristics. To study this batik ...
متن کاملAn Efficient Batik Image Retrieval System Based on Color and Texture Features
Research in batik image retrieval is still challenging today. In this paper, we present an efficient system for batik image retrieval that combine color and texture features. The proposed approach is based on color auto-correlogram method as color feature extraction method and Gray Level Co-occurrence Matrix (GLCM) method as texture feature extraction method. Firstly, HSV (Hue Saturation Value)...
متن کاملGeneralizing Texture Images Using Wavelet-Based Image Retrieval Algorithms
Data generalization is a data preprocessing technique employed in data mining. It is a process that abstracts a large set of task-relevant data in a database from a relatively low conceptual level to higher conceptual levels with the aim of reducing data size. This paper discusses a novel method of generalizing texture images by clustering them based on color, texture and semantically classifyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006