Positional differences of axon growth rates between sensory neurons encoded by Runx3.

نویسندگان

  • Francois Lallemend
  • Ulrich Sterzenbach
  • Saida Hadjab-Lallemend
  • Jorge B Aquino
  • Goncalo Castelo-Branco
  • Indranil Sinha
  • J Carlos Villaescusa
  • Ditsa Levanon
  • Yiqiao Wang
  • Marina C M Franck
  • Olga Kharchenko
  • Igor Adameyko
  • Sten Linnarsson
  • Yoram Groner
  • Eric Turner
  • Patrik Ernfors
چکیده

The formation of functional connectivity in the nervous system is governed by axon guidance that instructs nerve growth and branching during development, implying a similarity between neuronal subtypes in terms of nerve extension. We demonstrate the molecular mechanism of another layer of complexity in vertebrates by defining a transcriptional program underlying growth differences between positionally different neurons. The rate of axon extension of the early subset of embryonic dorsal root ganglion sensory neurons is encoded in neurons at different axial levels. This code is determined by a segmental pattern of axial levels of Runx family transcription factor Runx3. Runx3 in turn determines transcription levels of genes encoding cytoskeletal proteins involved in axon extension, including Rock1 and Rock2 which have ongoing activities determining axon growth in early sensory neurons and blocking Rock activity reverses axon extension deficits of Runx3(-/-) neurons. Thus, Runx3 acts to regulate positional differences in axon extension properties apparently without affecting nerve guidance and branching, a principle that could be relevant to other parts of the nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic regulation of the expression of neurotrophin receptors by Runx3.

Sensory neurons in the dorsal root ganglion (DRG) specifically project axons to central and peripheral targets according to their sensory modality. However, the molecular mechanisms that govern sensory neuron differentiation and the axonal projections remain unclear. The Runt-related transcription factors, Runx1 and Runx3, are expressed in DRG neuronal subpopulations, suggesting that they might...

متن کامل

Graded Activity of Transcription Factor Runx3 Specifies the Laminar Termination Pattern of Sensory Axons in the Developing Spinal Cord

Different functional classes of dorsal root ganglion sensory neurons project their axons to distinct target zones within the developing spinal cord. To explore the mechanisms that link sensory neuron subtype identity and axonal projection pattern, we analyzed the roles of Runx and ETS transcription factors in the laminar targeting of sensory afferents. Gain- and loss-of-function studies in chic...

متن کامل

The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons.

The RUNX transcription factors are important regulators of linage-specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show...

متن کامل

Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses.

Target-dependent increases in axon growth and varicosities accompany the formation of functional synapses between Aplysia sensory neurons and specific postsynaptic neurons (L7 and not L11). The enhanced growth is regulated in part by a target-dependent increase in the secretion of sensorin, the sensory neuron neuropeptide. We report here that protein kinase C (PKC) activity is required for syna...

متن کامل

“Runx”ing towards Sensory Differentiation

Somatosensory stimuli are encoded by molecularly and anatomically diverse classes of dorsal root ganglia (DRG) neurons. In this issue of Neuron, three papers demonstrate that the Runx transcription factors, Runx1 and Runx3, respectively regulate the molecular identities and spinal terminations of TrkA+ nociceptive neurons and TrkC+ proprioceptive neurons. These findings emphasize the importance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 31 18  شماره 

صفحات  -

تاریخ انتشار 2012