Bayesian multivariate hierarchical transformation models for ROC analysis.
نویسندگان
چکیده
A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملDefault Bayesian Analysis for Hierarchical Spatial Multivariate Models
In recent years, multivariate spatial models have been proven to be an effective tool for analyzing spatially related multidimensional data arising from a common underlying spatial process. Currently, the Bayesian analysis is perhaps the only solution available in this framework where prior selection plays an important role in the inference. The present article contributes towards the developme...
متن کاملFace recognition system based on Doubly truncated multivariate Gaussian Mixture Model
A face recognition algorithm based on doubly truncated multivariate Gaussian mixture model with DCT is introduced. The truncation on the feature vector with a significant influence on improving the recognition rate of the system using EM algorithm with K-means or hierarchical clustering is implemented. The characteristic model parameters are estimated. The EM algorithm containing the updated eq...
متن کاملA Bayesian hierarchical non-linear regression model in receiver operating characteristic analysis of clustered continuous diagnostic data.
Receiver operating characteristic (ROC) analysis is a useful evaluative method of diagnostic accuracy. A Bayesian hierarchical nonlinear regression model for ROC analysis was developed. A validation analysis of diagnostic accuracy was conducted using prospective multi-center clinical trial prostate cancer biopsy data collected from three participating centers. The gold standard was based on rad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2006