Fast and Deterministic Computation of Fixation Probability in Evolutionary Graphs
نویسندگان
چکیده
In evolutionary graph theory biologists study the problem of determining the probability that a small number of mutants overtake a population that is structured on a weighted, possibly directed graph. Currently Monte Carlo simulations are used for estimating such fixation probabilities on directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic algorithm for computing fixation probabilities for strongly connected directed, weighted evolutionary graphs under the case of neutral drift, which we show to be a lower bound for the case where the mutant is more fit than the rest of the population (previously, this was only observed from simulation). We also show that, in neutral drift, fixation probability is additive under the weighted, directed case. We implement our algorithm and show experimentally that it consistently outperforms Monte Carlo simulations by several orders of magnitude, which can allow researchers to study fixation probability on much larger graphs. Conference Name: Sixth IASTED International Conference on Computational Intelligence and Bioinformatics Conference Date: November 07, 2012 In evolutionary graph theory biologists study the problem of determining the probability that a small number of mutants overtake a population that is structured on a weighted, possibly directed graph. Currently Monte Carlo simulations are used for estimating such fixation probabilities on directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic algorithm for computing fixation probabilities for strongly connected directed, weighted evolutionary graphs under the case of neutral drift, which we show to be a lower bound for the case where the mutant is more fit than the rest of the population (previously, this was only observed from simulation). We also show that, in neutral drift, fixation probability is additive under the weighted, directed case. We implement our algorithm and show experimentally that it consistently outperforms Monte Carlo simulations by several orders of magnitude, which can allow researchers to study fixation probability on much larger graphs. FAST AND DETERMINISTIC COMPUTATION OF FIXATION PROBABILITY IN EVOLUTIONARY GRAPHS Paulo Shakarian Network Science Center and Dept. of Electrical Engineering and Computer Science United States Military Academy West Point, NY email: [email protected] Patrick Roos Dept. of Computer Science University of Maryland College Park, MD email: [email protected] ABSTRACT In evolutionary graph theory [1] biologists study the problem of determining the probability that a small number of mutants overtake a population that is structured on a weighted, possibly directed graph. Currently Monte Carlo simulations are used for estimating such fixation probabilities on directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic algorithm for computing fixation probabilities for strongly connected directed, weighted evolutionary graphs under the case of neutral drift, which we show to be a lower bound for the case where the mutant is more fit than the rest of the population (previously, this was only observed from simulation). We also show that, in neutral drift, fixation probability is additive under the weighted, directed case. We implement our algorithm and show experimentally that it consistently outperforms Monte Carlo simulations by several orders of magnitude, which can allow researchers to study fixation probability on much larger graphs.In evolutionary graph theory [1] biologists study the problem of determining the probability that a small number of mutants overtake a population that is structured on a weighted, possibly directed graph. Currently Monte Carlo simulations are used for estimating such fixation probabilities on directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic algorithm for computing fixation probabilities for strongly connected directed, weighted evolutionary graphs under the case of neutral drift, which we show to be a lower bound for the case where the mutant is more fit than the rest of the population (previously, this was only observed from simulation). We also show that, in neutral drift, fixation probability is additive under the weighted, directed case. We implement our algorithm and show experimentally that it consistently outperforms Monte Carlo simulations by several orders of magnitude, which can allow researchers to study fixation probability on much larger graphs.
منابع مشابه
Fast and asymptotic computation of the fixation probability for Moran processes on graphs
Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogeneous case. One of the most important models has been proposed in Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The Markov chain associated with the graph can be modified by erasing all non-trivial loops in i...
متن کاملA novel analytical method for evolutionary graph theory problems
Evolutionary graph theory studies the evolutionary dynamics of populations structured on graphs. A central problem is determining the probability that a small number of mutants overtake a population. Currently, Monte Carlo simulations are used for estimating such fixation probabilities on general directed graphs, since no good analytical methods exist. In this paper, we introduce a novel determ...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملEvolution in random fitness landscapes: the infinite sites model Su-Chan Park and Joachim Krug The effect of hubs and shortcuts on fixation time in evolutionary graphs
One of the most fundamental concepts of evolutionary dynamics is the ‘fixation’ probability, i.e. the probability that a gene spreads through the whole population. Most natural communities are geographically structured into habitats exchanging individuals among themselves. The topology of the migration patterns is believed to influence the spread of a new mutant, but no general analytical resul...
متن کاملجانمایی دوربین در طراحی شبکههای فتوگرامتری صنعتی با استفاده از بهینهسازی تکاملی چندگانه
Nowadays, the subject of vision metrology network design is local enhancement of the existing network. In the other words, it has changed from first to third order design concept. To improve the network, locally, some new camera stations should be added to the network in drawback areas. The accuracy of weak points is enhanced by the new images, if the related vision constraints are satisfied si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011