Synaptic Ras GTPase activating protein regulates pattern formation in the trigeminal system of mice.

نویسندگان

  • Mark W Barnett
  • Ruth F Watson
  • Tania Vitalis
  • Karen Porter
  • Noboru H Komiyama
  • Patrick N Stoney
  • Thomas H Gillingwater
  • Seth G N Grant
  • Peter C Kind
چکیده

The development of ordered connections or "maps" within the nervous system is a common feature of sensory systems and is crucial for their normal function. NMDA receptors are known to play a key role in the formation of these maps; however, the intracellular signaling pathways that mediate the effects of glutamate are poorly understood. Here, we demonstrate that SynGAP, a synaptic Ras GTPase activating protein, is essential for the anatomical development of whisker-related patterns in the developing somatosensory pathways in rodent forebrain. Mice lacking SynGAP show only partial segregation of barreloids in the thalamus, and thalamocortical axons segregate into rows but do not form whisker-related patches. In cortex, layer 4 cells do not aggregate to form barrels. In Syngap(+/-) animals, barreloids develop normally, and thalamocortical afferents segregate in layer 4, but cell segregation is retarded. SynGAP is not necessary for the development of whisker-related patterns in the brainstem. Immunoelectron microscopy for SynGAP from layer 4 revealed a postsynaptic localization with labeling in developing postsynaptic densities (PSDs). Biochemically, SynGAP associates with the PSD in a PSD-95-independent manner, and Psd-95(-/-) animals develop normal barrels. These data demonstrate an essential role for SynGAP signaling in the activity-dependent development of whisker-related maps selectively in forebrain structures indicating that the intracellular pathways by which NMDA receptor activation mediates map formation differ between brain regions and developmental stage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity.

Synaptic GTPase-activating protein (SynGAP) is a neuronal RasGAP (Ras GTPase-activating protein) that is selectively expressed in brain and highly enriched at excitatory synapses, where it negatively regulates Ras activity and its downstream signaling pathways. To investigate the physiological role of SynGAP in the brain, we have generated mutant mice lacking the SynGAP protein. These mice exhi...

متن کامل

A Synaptic Ras-GTPase Activating Protein (p135 SynGAP) Inhibited by CaM Kinase II

Ca2+ influx through N-methyl-D-aspartate- (NMDA-) type glutamate receptors plays a critical role in synaptic plasticity in the brain. One of the proteins activated by the increase in Ca2+ is CaM kinase II (CaMKII). Here, we report a novel synaptic Ras-GTPase activating protein (p135 SynGAP) that is a major component of the postsynaptic density, a complex of proteins associated with synaptic NMD...

متن کامل

SynGAP: a Synaptic RasGAP that Associates with the PSD-95/SAP90 Protein Family

The PSD-95/SAP90 family of proteins has recently been implicated in the organization of synaptic structure. Here, we describe the isolation of a novel Ras-GTPase activating protein, SynGAP, that interacts with the PDZ domains of PSD-95 and SAP102 in vitro and in vivo. SynGAP is selectively expressed in brain and is highly enriched at excitatory synapses, where it is present in a large macromole...

متن کامل

A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory.

The scaffolding protein WAVE-1 (Wiskott-Aldrich syndrome protein family member 1) directs signals from the GTPase Rac through the Arp2/3 complex to facilitate neuronal actin remodeling. The WAVE-associated GTPase activating protein called WRP is implicated in human mental retardation, and WAVE-1 knock-out mice have altered behavior. Neuronal time-lapse imaging, behavioral analyses, and electrop...

متن کامل

SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor.

At excitatory synapses, the postsynaptic scaffolding protein postsynaptic density 95 (PSD-95) couples NMDA receptors (NMDARs) to the Ras GTPase-activating protein SynGAP. The close association of SynGAP and NMDARs suggests that SynGAP may have an important role in NMDAR-dependent activation of Ras signaling pathways, such as the MAP kinase pathway, and in synaptic plasticity. To explore this is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2006