Transient Voltage Distribution in Stator Winding of Electrical Machine Fed from a Frequency Converter

نویسنده

  • BOLARIN S. OYEGOKE
چکیده

Standard induction motors are exposed to steep-fronted, non-sinusoidal voltages when fed from frequency converters. These wave patterns can be destructive to the insulation. The aim of the present work is to develop methods of predicting the magnitude and distribution of fast voltage within the stator winding of an electric machine fed from a frequency converter. Three methods of predicting the magnitude and distribution of fast voltages within form windings commonly used in medium and high voltage machines are described. These methods utilise some aspects of previously published works on the surge propagation studies to achieve simplification of the solution without loss of accuracy. Two of these methods are applied to the voltage calculation in random winding commonly used in low voltage machines. Multi-conductor transmission line theory forms the basis of the methods described in this work. Computation of the voltage distribution using either of these methods requires the calculation of the parameters for the slot and the end (over-hang) part of the winding. The parallel plate capacitor method, the indirect boundary integral equation method and the finite element method are the three possible methods of calculating the capacitance also described in this work. Duality existing between the magnetic and the electric field has been used for the inductance calculation. Application of these methods to the voltage calculation in the first coil from the line-end of a 6 kV induction motor is shown to be successful. From the computed and measured voltage results it is evident that the improved accuracy for the capacitance values is sufficient to give good agreement between the measured and calculated inter-turn voltages without the need to infer the presence of a surface impedance effect due to the laminated core. Application of two of these methods for the transient voltage calculation on the first coil from the terminal-end of low voltage induction motors with random windings is also shown to be successful. Comparison between the computed and the measured results shows that the turn-to-ground capacitance matrix obtained in overhang part of the coil can be assumed the for the slot part of the coil. With this assumption modelling the first five turns in the line-end coil produce turn and coil voltage that match well with the corresponding measuring result. The methods of voltage computation described in this work should be of great help to engineers and researchers concerned with the turn strength and over-voltage protection in high and low voltage motors.  All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing the Efficiency of the Power Electronic Converter for a Proposed Dual Stator Winding Squirrel-Cage Induction Motor Drive Using a Five-Leg Inverter at Low Speeds

A dual stator winding squirrel-cage induction motor (DSWIM) is a brushless single-frame induction motor that contains a stator with two isolated three-phase windings wound with dissimilar numbers of poles. Each stator winding is fed by an independent three-phase inverter. The appropriate efficiency of this motor is obtained when the ratio of two frequencies feeding the machine is equal to the r...

متن کامل

A Comparative Study on Predictive and ISVM Direct Torque Control Methods for a Doubly Fed Induction Machine Fed by an Indirect Matrix Converter

This paper presents a comparative study on the Predictive Direct Torque Control method and the Indirect Space Vector Modulation Direct Torque Control method for a Doubly-Fed Induction Machine (DFIM) which its rotor is fed by an Indirect Matrix Converter (IMC). In Conventional DTC technique, good transient and steady-state performances are achieved but it presents a non constant switching fr...

متن کامل

Low Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage

In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...

متن کامل

Direct Flux Control for Stand-Alone Operation

In this paper, a novel voltage control strategy of stand-alone operation brushless doubly 9 fed induction generator for variable speed constant frequency wind energy conversion systems 10 was presented and discussed particularly. Based on the model of the generator power system, the 11 proposed direct flux control strategy employs a nonlinear reduced-order generalized integrator 12 based resona...

متن کامل

A Novel Stand-Alone Single-Phase Induction Generator Using a Three-Phase Machine and a Single-Phase PWM Inverter

A new type of single-phase stand-alone induction generator using a three-phase induction machine and a single-phase voltage-source PWM inverter is introduced. The generator scheme is capable of producing constant load frequency with a very well regulated output voltage. A small lead acid battery and a single-phase full diode-bridge rectifier are used to feed the inverter. The inverter feeds one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000