Separated-occurrence Inequalities for Dependent Percolation and Ising Models
نویسنده
چکیده
Separated-occurrence inequalities are variants for dependent lattice models of the van den Berg-Kesten inequality for independent models. They take the form P (A◦rB) ≤ (1 + ce−ǫr)P (A)P (B), where A ◦r B is the event that A and B occur at separation r in a configuration ω, that is, there exist two random sets of bonds or sites separated by at least distance r, one set responsible for the occurrence of the event A in ω, the other for the occurrence of B. We establish such inequalities for subcritical FK models, and for Ising models which are at supercritical temperature or have an external field, with A and B increasing or decreasing events.
منابع مشابه
Comparison and Disjoint-occurrence Inequalities for Random-cluster Models
Geoffrey Grimmett Abstra t. A principal technique for studying percolation, (ferromagnetic) Ising, Potts, and random-cluster models is the FKG inequality, which implies certain stochastic comparison inequalities for the associated probability measures. The first result of this paper is a new comparison inequality, proved using an argument developed in Refs. 2, 6, 14, and 21 in order to obtain s...
متن کاملDisordered Ising Systems and Random Cluster Representations
We discuss the Fortuin–Kasteleyn (FK) random cluster representation for Ising models with no external field and with pair interactions which need not be ferromagnetic. In the ferromagnetic case, the close connections between FK percolation and Ising spontaneous magnetization and the availability of comparison inequalities to independent percolation have been applied to certain disordered system...
متن کاملExplicit isoperimetric constants, phase transitions in the random-cluster and Potts models, and Bernoullicity
The random-cluster model is a dependent percolation model that has applications in the study of Ising and Potts models. In this paper, several new results for the random-cluster model with cluster parameter q ≥ 1 are obtained. These include an explicit pointwise dynamical construction of random-cluster measures for arbitrary graphs, and for unimodular transitive graphs, lack of percolation for ...
متن کاملIntroduction to Schramm-Loewner evolution and its application to critical systems
In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...
متن کاملCardy’s Formula for some Dependent Percolation Models
We prove Cardy’s formula for rectangular crossing probabilities in dependent site percolation models that arise from a deterministic cellular automaton with a random initial state. The cellular automaton corresponds to the zero-temperature case of Domany’s stochastic Ising ferromagnet on the hexagonal lattice H (with alternating updates of two sublattices) [7]; it may also be realized on the tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008