Model-Assisted 3D Face Reconstruction from Video
نویسندگان
چکیده
This paper describes a model-assisted system for reconstruction of 3D faces from a single consumer quality camera using a structure from motion approach. Typical multi-view stereo approaches use the motion of a sparse set of features to compute camera pose followed by a dense matching step to compute the final object structure. Accurate pose estimation depends upon precise identification and matching of feature points between images, but due to lack of texture on large areas of the face, matching is prone to errors. To deal with outliers in both the sparse and dense matching stages, previous work either relies on a strong prior model for face geometry or imposes restrictions on the camera motion. Strong prior models result in a serious compromise in final reconstruction quality and typically bear a signature resemblance to a generic or mean face. Model-based techniques, while giving the appearance of face detail, in fact carry this detail over from the model prior. Face features such as beards, moles, and other characteristic geometry are lost. Motion restrictions such as allowing only pure rotation are nearly impossible to satisfy by the end user, especially with a handheld camera. We significantly improve the robustness and flexibility of existing monocular face reconstruction techniques by introducing a deformable generic face model only at the pose estimation, face segmentation, and preprocessing stages. To preserve data fidelity in the final reconstruction, this generic model is discarded completely and dense matching outliers are removed using tensor voting: a purely data-driven technique. Results are shown from a complete end to end system.
منابع مشابه
3D face reconstruction from video using a generic model
Reconstructing a 3D model of a human face from a video sequence is an important problem in computer vision, with applications to recognition, surveillance, multimedia etc. However, the quality of 3D reconstructions using structure from motion (SfM) algorithms is often not satisfactory. One common method of overcoming this problem is to use a generic model of a face. Existing work using this app...
متن کامل3D Face Reconstruction and Gaze Estimation from Multi-view Video using Symmetry Prior
In this paper we propose a novel method that performs 3D face reconstruction, and non-constrained and non-contact gaze estimation on a moving object, whose head-pose can freely change, from multi-view video. The main idea is to first reconstruct the 3D face with high accuracy using symmetry prior. Then we generate a super-resolution virtual frontal face video from the estimated 3D face geometry...
متن کاملDense 3D face alignment from 2D video for real-time use
To enable real-time, person-independent 3D registration from 2D video, we developed a 3D cascade regression approach in which facial landmarks remain invariant across pose over a range of approximately 60 degrees. From a single 2D image of a person’s face, a dense 3D shape is registered in real time for each frame. The algorithm utilizes a fast cascade regression framework trained on high-resol...
متن کامل3D Semi-Landmarks Based Statistical Face Reconstruction
The aim of craniofacial reconstruction is to estimate the shape of a face from the shape of the skull. Few works in machine-assisted facial reconstruction have been conducted so far, probably due to technical poor machine performance and data availability and theoretical complexity reasons. Therefore, the main works in the literature consist in manual reconstructions. In this paper, an original...
متن کامل3D Model-Based Face Recognition in Video
Face recognition in video has gained wide attention due to its role in designing surveillance systems. One of the main advantages of video over still frames is that evidence accumulation over multiple frames can provide better face recognition performance. However, surveillance videos are generally of low resolution containing faces mostly in non-frontal poses. Consequently, face recognition in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007