Developmental Stage Oxidoreductive States of Chlamydia and Infected Host Cells
نویسندگان
چکیده
UNLABELLED A defining characteristic of Chlamydia spp. is their developmental cycle characterized by outer membrane transformations of cysteine bonds among cysteine-rich outer membrane proteins. The reduction-oxidation states of host cell compartments were monitored during the developmental cycle using live fluorescence microscopy. Organelle redox states were studied using redox-sensitive green fluorescent protein (roGFP1) expressed in CF15 epithelial cells and targeted to the cytosol, mitochondria, and endoplasmic reticulum (ER). The redox properties of chlamydiae and the inclusion were monitored using roGFP expressed by Chlamydia trachomatis following transformation. Despite the large morphological changes associated with chlamydial infection, redox potentials of the cytosol (Ψ(cyto) [average, -320 mV]), mitochondria (Ψ(mito) [average, -345 mV]), and the ER (ΨER [average, -258 mV]) and their characteristic redox regulatory abilities remained unchanged until the cells died, at which point Ψ(cyto) and Ψ(mito) became more oxidized and Ψ(ER) became more reduced. The redox status of the chlamydial cytoplasm was measured following transformation and expression of the roGFP biosensor in C. trachomatis throughout the developmental cycle. The periplasmic and outer membrane redox states were assessed by the level of cysteine cross-linking of cysteine-rich envelope proteins. In both cases, the chlamydiae were highly reduced early in the developmental cycle and became oxidized late in the developmental cycle. The production of a late-developmental-stage oxidoreductase/isomerase, DsbJ, may play a key role in the regulation of the oxidoreductive developmental-stage-specific process. IMPORTANCE Infectious Chlamydia organisms have highly oxidized and cysteine cross-linked membrane proteins that confer environmental stability when outside their host cells. Once these organisms infect a new host cell, the proteins become reduced and remain reduced during the active growth stage. These proteins become oxidized at the end of their growth cycle, wherein infectious organisms are produced and released to the environment. How chlamydiae mediate and regulate this key step in their pathogenesis is unknown. Using biosensors specifically targeted to different compartments within the infected host cell and for the chlamydial organisms themselves, the oxidoreductive states of these compartments were measured during the course of infection. We found that the host cell redox states are not changed by infection with C. trachomatis, whereas the state of the chlamydial organisms remains reduced during infection until the late developmental stages, wherein the organisms' cytosol and periplasm become oxidized and they acquire environmental resistance and infectivity.
منابع مشابه
Immuno-gold Labelling of Chlamydia trachomatis
Background Chlamydia trachomatis is considered as an important cause of preventable sexually transmitted diseases worldwide. It is known to be of an obligate intracellular nature and enters its target cells via an endocytic process. As major outer membrane protein (MOMP) is one of the main candidates for the attachment and entry of chlamydia to the host cells we have tried to label the epitopes...
متن کاملP-41: Association Study of MICA*008 Gene Polymorphism with Chlamydia Trachomatis Infection in Infertile Men Reffer to Royan Institute
Background: Chlamydia trachomatis(CT) is an obligate intracellular bacteria, requires living cells to replicate itself. CT infection can remain up to 4 years in the couple and affect their fertility. The relationship between CT and infertility is very important because most patients are asymptomatic and untreated. After infection with CT, NK activation signals begin through interactions of its ...
متن کاملUltrastructural cytochemical evidence for the activation of lysosomes in the cytocidal effect of Chlamydia psittaci.
The cytopathic effect of the polyarthritis strain of Chlamydia psittaci was studied in cultured bovine fetal spleen cells and found to be mediated by the release of lysosomal enzymes into the host cytoplasm during the late stages of chlamydial development. Ultrastructural cytochemical analysis and cell fractionation studies of infected cells revealed a close relationship between the stage of ch...
متن کاملActin Recruitment to the Chlamydia Inclusion Is Spatiotemporally Regulated by a Mechanism That Requires Host and Bacterial Factors
The ability to exit host cells at the end of their developmental growth is a critical step for the intracellular bacterium Chlamydia. One exit strategy, extrusion, is mediated by host signaling pathways involved with actin polymerization. Here, we show that actin is recruited to the chlamydial inclusion as a late event, occurring after 20 hours post-infection (hpi) and only within a subpopulati...
متن کاملGrowth of Chlamydia trachomatis in enucleated cells.
Chlamydia trachomatis is an obligate intracellular parasite of eucaryotic cells. Little is known about the role of the host in supporting chlamydial replication beyond the facts that host cells provide ATP and that de novo host protein synthesis is not required for bacterial growth. To further explore potential contributions of host nuclear function to chlamydial development, we questioned whet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014