Semi-Supervised Clustering with Limited Background Knowledge

نویسنده

  • Sugato Basu
چکیده

In many machine learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate. Consequently, semi-supervised learning, learning from a combination of both labeled and unlabeled data, has become a topic of significant recent interest. Our research focus is on semi-supervised clustering, which uses a small amount of supervised data in the form of class labels or pairwise constraints on some examples to aid unsupervised clustering. Semi-supervised clustering can be either constraint-based, i.e., changes are made to the clustering objective to satisfy user-specified labels/constraints, or metricbased, i.e., the clustering distortion measure is trained to satisfy the given labels/constraints. Our main goal in this thesis is to study constraint-based semi-supervised clustering algorithms, integrate them with metric-based approaches, characterize some of their properties and empirically validate our algorithms on different domains, e.g., text processing and bioinformatics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

An Adaptive Kernel Method for Semi-supervised Clustering

Semi-supervised clustering uses the limited background knowledge to aid unsupervised clustering algorithms. Recently, a kernel method for semi-supervised clustering has been introduced, which has been shown to outperform previous semi-supervised clustering approaches. However, the setting of the kernel’s parameter is left to manual tuning, and the chosen value can largely affect the quality of ...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Two Phase Semi-supervised Clustering Using Background Knowledge

Using background knowledge in clustering, called semi-clustering, is one of the actively researched areas in data mining. In this paper, we illustrate how to use background knowledge related to a domain more efficiently. For a given data, the number of classes is investigated by using the must-link constraints before clustering and these must-link data are assigned to the corresponding classes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004