Selective rod degeneration and partial cone inactivation characterize an iodoacetic acid model of Swine retinal degeneration.

نویسندگان

  • Wei Wang
  • Juan Fernandez de Castro
  • Eric Vukmanic
  • Liang Zhou
  • Douglas Emery
  • Paul J Demarco
  • Henry J Kaplan
  • Douglas C Dean
چکیده

PURPOSE. Transgenic pigs carrying a mutant human rhodopsin transgene have been developed as a large animal model of retinitis pigmentosa (RP). This model displays some key features of human RP, but the time course of disease progression makes this model costly, time consuming, and difficult to study because of the size of the animals at end-stage disease. Here, the authors evaluate an iodoacetic acid (IAA) model of photoreceptor degeneration in the pig as an alternative model that shares features of the transgenic pig and human RP. METHODS. IAA blocks glycolysis, thereby inhibiting photoreceptor function. The effect of the intravenous injection of IAA on swine rod and cone photoreceptor viability and morphology was followed by histologic evaluation of different regions of the retina using hematoxylin and eosin and immunostaining. Rod and cone function was analyzed by full-field electroretinography and multifocal electroretinography. RESULTS. IAA led to specific loss of rods in a central-to-peripheral retinal gradient. Although cones were resistant, they showed shortened outer segments, loss of bipolar cell synaptic connections, and a diminished flicker ERG, hallmarks of transition to cone dysfunction in RP patients. CONCLUSIONS. IAA provides an alternative rod-dominant model of retinal damage that shares a surprising number of features with the pig transgenic model of RP and with human RP. This IAA model is cost-effective and rapid, ensuring that the size of the animals does not become prohibitive for end-stage evaluation or therapeutic intervention.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina.

Retinitis pigmentosa (RP), a type of retinal degeneration involving first rod and then slow cone photoreceptor degeneration, can be caused by any of a number of mutations in different genes. In the cases of mutations affecting rod-specific genes such as rhodopsin, it is unclear how the mutations may cause degeneration of cones. We have used the porcine retina, which is rod-dominated and has an ...

متن کامل

Restoration of Cone Photoreceptor Function in Retinitis Pigmentosa

The major cause of hereditary blindness in North America is retinitis pigmentosa (RP), which is a group of inherited diseases of the retina characterized by the onset of night blindness, the early loss of the peripheral visual field, and the late loss of central vision. In the late stage of the disease when retinal degeneration approaches the macula and cone degeneration ensues, most patients f...

متن کامل

Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.

PURPOSE In animal models of retinitis pigmentosa, rod photoreceptor degeneration eventually leads to loss of cone photoreceptors. The purpose of this study was to characterize a transgenic model of rod degeneration in zebrafish. METHODS Zebrafish transgenic for XOPS-mCFP, a membrane-targeted form of cyan fluorescent protein driven by the Xenopus rhodopsin promoter, were generated by plasmid i...

متن کامل

Cone degeneration following rod ablation in a reversible model of retinal degeneration.

PURPOSE Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reve...

متن کامل

Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice

In retinitis pigmentosa, loss of cone photoreceptors leads to blindness, and preservation of cone function is a major therapeutic goal. However, cone loss is thought to occur as a secondary event resulting from degeneration of rod photoreceptors. Here we report a genome editing approach in which adeno-associated virus (AAV)-mediated CRISPR/Cas9 delivery to postmitotic photoreceptors is used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 52 11  شماره 

صفحات  -

تاریخ انتشار 2011