Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model.

نویسندگان

  • Suckjoon Jun
  • Haiyang Zhang
  • John Bechhoefer
چکیده

Motivated by a recent application of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model to the study of DNA replication, we consider the one-dimensional (1D) version of this model. We generalize previous work to the case where the nucleation rate is an arbitrary function I (t) and obtain analytical results for the time-dependent distributions of various quantities (such as the island distribution). We also present improved computer simulation algorithms to study the 1D KJMA model. The analytical results and simulations are in excellent agreement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite volume Kolmogorov-Johnson-Mehl-Avrami theory.

We study the Kolmogorov-Johnson-Mehl-Avrami theory of phase conversion in finite volumes. For the conversion time we find the relationship tau(con)=tau(nu)[1+f(d)(q)]. Here d is the space dimension, tau(nu) the nucleation time in the volume V, and f(d)(q) a scaling function. Its dimensionless argument is q=tau(ex)/tau(nu), where tau(ex) is an expansion time, defined to be proportional to the di...

متن کامل

Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization

The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the KolmogorovJohnson-Mehl-Avrami model. We have not imposed restrictions on the time dep...

متن کامل

Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.

The homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. The whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follo...

متن کامل

Beyond the constraints underlying Kolmogorov-Johnson-Mehl-Avrami theory related to the growth laws.

The theory of Kolmogorov-Johnson-Mehl-Avrami for phase transition kinetics is subjected to severe limitations concerning the functional form of the growth law. This paper is devoted to sidestepping this drawback through the use of the correlation function approach. Moreover, we put forward an easy-to-handle formula, written in terms of the experimentally accessible actual extended volume fracti...

متن کامل

The Meaning of the Impingement Parameter .

If certain preconditions are met, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) kinetic equation is exactly accurate for nucleation and growth reactions with linear growth and is, at least, a good approximation for nucleation and growth reactions with parabolic growth. These preconditions include randomly distributed product phases, isotropic growth and constant equilibrium state. Mechanisms causin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 71 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005