Block-Diagonal Sparse Representation by Learning a Linear Combination Dictionary for Recognition

نویسندگان

  • Xinglin Piao
  • Yongli Hu
  • Yanfeng Sun
  • Junbin Gao
  • Baocai Yin
چکیده

In a sparse representation based recognition scheme, it is critical to learn a desired dictionary, aiming both good representational power and discriminative performance. In this paper, we propose a new dictionary learning model for recognition applications, in which three strategies are adopted to achieve these two objectives simultaneously. First, a block-diagonal constraint is introduced into the model to eliminate the correlation between classes and enhance the discriminative performance. Second, a low-rank term is adopted to model the coherence within classes for refining the sparse representation of each class. Finally, instead of using the conventional over-complete dictionary, a specific dictionary constructed from the linear combination of the training samples is proposed to enhance the representational power of the dictionary and to improve the robustness of the sparse representation model. The proposed method is tested on several public datasets. The experimental results show the method outperforms most state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Speaker Recognition via Block Sparse Bayesian Learning

In order to demonstrate the effectiveness of sparse representation techniques for speaker recognition, a dictionary of feature vectors belonging to all speakers is constructed by total variability i-vectors. Each feature vector from unknown utterance is expressed as linear weighted sum of a dictionary. The weights are calculated using Block Sparse Bayesian Learning (BSBL) where the sparsest sol...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1601.01432  شماره 

صفحات  -

تاریخ انتشار 2016