Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators
نویسنده
چکیده
We announce some results obtained in a recent study [14], concerning a general class of hypoelliptic evolution operators in R. A Gaussian lower bound for the fundamental solution and a global Harnack inequality are given.
منابع مشابه
Partial differential equations. -- Gaussian estimates for hypoelliptic operators via optimal control
Partial differential equations. — Gaussian estimates for hypoelliptic operators via optimal control, by UGO BOSCAIN and SERGIO POLIDORO, communicated on 11 May 2007. ABSTRACT. — We obtain Gaussian lower bounds for the fundamental solution of a class of hypoelliptic equations, by using repeatedly an invariant Harnack inequality. Our main result is given in terms of the value function of a suitab...
متن کاملOn the Harnack Inequality for a Class of Hypoelliptic Evolution Equations
We give a direct proof of the Harnack inequality for a class of degenerate evolution operators which contains the linearized prototypes of the Kolmogorov and Fokker-Planck operators. We also improve the known results in that we find explicitly the optimal constant of the inequality.
متن کاملSchauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov type operators in non-divergence form
We prove some Schauder type estimates and an invariant Harnack inequality for a class of degenerate evolution operators of Kolmogorov type. We also prove a Gaussian lower bound for the fundamental solution of the operator and a uniqueness result for the Cauchy problem. The proof of the lower bound is obtained by solving a suitable optimal control problem and using the invariant Harnack inequality.
متن کاملproperties of M−hyoellipticity for pseudo differential operators
In this paper we study properties of symbols such that these belong to class of symbols sitting insideSm ρ,φ that we shall introduce as the following. So for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of M−hypoelliptic pseudodifferential operators for which define base on this class of symbols. Also we consider maxi...
متن کاملPseudo-differential Operators on Fractals and Other Metric Measure Spaces
We define and study pseudo-differential operators on a class of fractals that include the post-critically finite self-similar sets and Sierpinski carpets. Using the sub-Gaussian estimates of the heat operator we prove that our operators have kernels that decay and, in the constant coefficient case, are smooth off the diagonal. Our analysis can be extended to products of fractals. While our resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004