Image quality assessment using two-dimensional complex mel-cepstrum

نویسندگان

  • Serdar Çakir
  • A. Enis Çetin
چکیده

Assessment of visual quality plays a crucial role in modeling, implementation, and optimization of imageand video-processing applications. The image quality assessment (IQA) techniques basically extract features from the images to generate objective scores. Feature-based IQA methods generally consist of two complementary phases: (1) feature extraction and (2) feature pooling. For feature extraction in the IQA framework, various algorithms have been used and recently, the two-dimensional (2-D) mel-cepstrum (2-DMC) feature extraction scheme has provided promising results in a feature-based IQA framework. However, the 2-DMC feature extraction scheme completely loses image-phase information that may contain high-frequency characteristics and important structural components of the image. In this work, “2-D complex mel-cepstrum” is proposed for feature extraction in an IQA framework. The method tries to integrate Fourier transform phase information into the 2-DMC, which was shown to be an efficient feature extraction scheme for assessment of image quality. Support vector regression is used for feature pooling that provides mapping between the proposed features and the subjective scores. Experimental results show that the proposed technique obtains promising results for the IQA problem by making use of the image-phase information.© 2016 SPIE and IS&T [DOI: 10 .1117/1.JEI.25.6.061604]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable image quality assessment with 2D mel-cepstrum and machine learning approach

Measurement of image quality is of fundamental importance to numerous image and video processing applications. Objective image quality assessment (IQA) is a two-stage process comprising of the following: (a) extraction of important information and discarding the redundant one, (b) pooling the detected features using appropriate weights. These two stages are not easy to tackle due to the complex...

متن کامل

Mel- and Mellin-cepstral Feature Extraction Algorithms for Face Recognition

In this article, an image feature extraction method based on two-dimensional (2D) Mellin cepstrum is introduced. The concept of one-dimensional (1D) mel-cepstrum that is widely used in speech recognition is extended to two-dimensions using both the ordinary 2D Fourier transform and the Mellin transform. The resultant feature matrices are applied to two different classifiers such as common matri...

متن کامل

Cepstrum Based Feature Extraction Method for Fungus Detection

In this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 9...

متن کامل

Fall detection using single-tree complex wavelet transform

The goal of Ambient Assisted Living (AAL) research is to improve the quality of life of the elderly and handicapped people and help them maintain an independent lifestyle with the use of sensors, signal processing and telecommunications infrastructure. Unusual human activity detection such as fall detection has important applications. In this paper, a fall detection algorithm for a low cost AAL...

متن کامل

Identification of Noisy Speech Signals using Bispectrum-based 2D- MFCC and Its Optimization through Genetic Algorithm as a Feature Extraction Subsystem

Power-spectrum-based Mel-Frequency Cepstrum Coefficients (MFCC) is usually used as a feature extractor in a speaker identification system. This one-dimensional feature extraction subsystem, however, shows low recognition rates for identifying utterance speech signals under harsh noise conditions. In this paper, we have developed a speaker identification system based on Bispectrum data that is m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Electronic Imaging

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016