A small-molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in lupus-prone NZB/NZW F1 and MRL/lpr mice.
نویسندگان
چکیده
Autoimmunity leads to the activation of innate effector pathways, proinflammatory cytokine production, and end-organ injury. Macrophage migration inhibitory factor (MIF) is an upstream activator of the innate response that mediates the recruitment and retention of monocytes via CD74 and associated chemokine receptors, and it has a role in the maintenance of B lymphocytes. High-expression MIF alleles also are associated with end-organ damage in different autoimmune diseases. We assessed the therapeutic efficacy of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an orally bioavailable MIF antagonist, in two distinct models of systemic lupus erythematosus: the NZB/NZW F1 and the MRL/lpr mouse strains. ISO-1, like anti-MIF, inhibited the interaction between MIF and its receptor, CD74, and in each model of disease, it reduced functional and histological indices of glomerulonephritis, CD74(+) and CXCR4(+) leukocyte recruitment, and proinflammatory cytokine and chemokine expression. Neither autoantibody production nor T and B cell activation were significantly affected, pointing to the specificity of MIF antagonism in reducing excessive proinflammatory responses. These data highlight the feasibility of targeting the MIF-MIF receptor interaction by small-molecule antagonism and support the therapeutic value of downregulating MIF-dependent pathways of tissue damage in systemic lupus erythematosus.
منابع مشابه
Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice.
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disease of unknown etiology. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is operative in innate and adaptive immunity and important in immune-mediated diseases such as rheumatoid arthritis and atherosclerosis. The functional relevance of MIF in systemic autoimmune diseases such as SLE is unkn...
متن کاملPhenotypic and functional alterations of pDCs in lupus-prone mice
Plasmacytoid dendritic cells (pDCs) were considered to be the major IFNα source in systemic lupus erythematosus (SLE) but their phenotype and function in different disease status have not been well studied. To study the function and phenotype of pDCs in lupus-prone mice we used 7 strains of lupus-prone mice including NZB/W F1, NZB, NZW, NZM2410, B6.NZM(Sle1/2/3), MRL/lpr and BXSB/Mp mice and C5...
متن کاملDistinct clonotypes of anti-DNA antibodies in mice with lupus nephritis.
Clonotypes of IgG anti-DNA antibodies were studied by isoelectric focusing in various autoimmune mice with or without lethal lupus nephritis. MRL/MpJ-lpr/lpr mice exhibited the most heterogeneous spectrotypes of anti-DNA antibodies in the pH range from 6.5 to 8.5, with marked variation in individual mice. Female (NZB X NZW)F1 mice expressed rather uniform DNA-binding bands composed of at least ...
متن کاملIFN-g Receptor Deletion Prevents Autoantibody Production and Glomerulonephritis in Lupus-Prone (NZB 3 NZW)F1 Mice
متن کامل
FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis.
Lupus glomerulonephritis is initiated by deposition of IgG-containing immune complexes in renal glomeruli. FcR engagement by immune complexes (IC) is crucial to disease development as uncoupling this pathway in FcRgamma(-/-) abrogates inflammatory responses in (NZB x NZW)F1 mice. To define the roles of FcR-bearing hemopoietic cells and of kidney resident mesangial cells in pathogenesis, (NZB x ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 186 1 شماره
صفحات -
تاریخ انتشار 2011