Hardness of Approximate Hypergraph Coloring

نویسندگان

  • Venkatesan Guruswami
  • Johan Håstad
  • Madhu Sudan
چکیده

We introduce the notion of covering complexity of a probabilistic verifier. The covering complexity of a verifier on a given input is the minimum number of proofs needed to “satisfy” the verifier on every random string, i.e., on every random string, at least one of the given proofs must be accepted by the verifier. The covering complexity of PCP verifiers offers a promising route to getting stronger inapproximability results for some minimization problems, and in particular, (hyper)-graph coloring problems. We present a PCP verifier for NP statements that queries only four bits and yet has a covering complexity of one for true statements and a super-constant covering complexity for statements not in the language. Moreover, the acceptance predicate of this verifier is a simple Not-all-Equal check on the four bits it reads. This enables us to prove that for any constant c, it is NP-hard to color a 2-colorable 4-uniform hypergraph using just c colors, and also yields a super-constant inapproximability result under a stronger hardness assumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

A hypergraph is said to be χ-colorable if its vertices can be colored with χ colors so that no hyperedge is monochromatic. 2-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 2-colorable k-uniform hypergraph, it is NP-hard to find a 2-coloring miscoloring fewer than a fraction 2−k+1 of hypered...

متن کامل

Reducing uniformity in Khot-Saket hypergraph coloring hardness reductions

In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraphwith 2 Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. In this note, we show that we can reduce the arity of their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hyperg...

متن کامل

A note on reducing uniformity in Khot-Saket hypergraph coloring hardness reductions

In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraph with 2(logn) Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. We reduce the arity in their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hypergraph coloring hardness r...

متن کامل

New Hardness Results for Graph and Hypergraph Colorings

Finding a proper coloring of a t-colorable graph G with t colors is a classic NP-hard problem when t ≥ 3. In this work, we investigate the approximate coloring problem in which the objective is to find a proper c-coloring of G where c ≥ t. We show that for all t ≥ 3, it is NP-hard to find a c-coloring when c ≤ 2t− 2. In the regime where t is small, this improves, via a unified approach, the pre...

متن کامل

The Hardness of 3 - Uniform Hypergraph Coloring

We prove that coloring a 3-uniform 2-colorable hypergraph with c colors is NP-hard for any constant c. The best known algorithm [20] colors such a graph using O(n1/5) colors. Our result immediately implies that for any constants k ≥ 3 and c2 > c1 > 1, coloring a k-uniform c1-colorable hypergraph with c2 colors is NP-hard; the case k = 2, however, remains wide open. This is the first hardness re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000