GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion.
نویسندگان
چکیده
The mechanisms governing atlastin-mediated membrane fusion are unknown. Here we demonstrate that a three-helix bundle (3HB) within the middle domain is required for oligomerization. Mutation of core hydrophobic residues within these helices inactivates atlastin function by preventing membrane tethering and the subsequent fusion. GTP binding induces a conformational change that reorients the GTPase domain relative to the 3HB to permit self-association, but the ability to hydrolyze GTP is required for full fusion, indicating that nucleotide binding and hydrolysis play distinct roles. Oligomerization of atlastin stimulates its ability to hydrolyze GTP, and the energy released drives lipid bilayer merger. Mutations that prevent atlastin self-association also abolish oligomerization-dependent stimulation of GTPase activity. Furthermore, increasing the distance of atlastin complex formation from the membrane inhibits fusion, suggesting that this distance is crucial for atlastin to promote fusion.
منابع مشابه
Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain.
The biogenesis and maintenance of the endoplasmic reticulum (ER) requires membrane fusion. ER homotypic fusion is driven by the large GTPase atlastin. Domain analysis of atlastin shows that a conserved region of the C-terminal cytoplasmic tail is absolutely required for fusion activity. Atlastin in adjacent membranes must associate to bring the ER membranes into molecular contact. Drosophila at...
متن کاملLipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion.
The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments ...
متن کاملStructures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes.
The generation of the tubular network of the endoplasmic reticulum (ER) requires homotypic membrane fusion that is mediated by the dynamin-like, membrane-bound GTPase atlastin (ATL). Here, we have determined crystal structures of the cytosolic segment of human ATL1, which give insight into the mechanism of membrane fusion. The structures reveal a GTPase domain and athree-helix bundle, connected...
متن کاملCis and trans interactions between atlastin molecules during membrane fusion.
Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in oppos...
متن کاملMechanistic Insights into Homotypic Fusion of ER Membranes by the Atlastin GTPase
A variety of diseases, including Hereditary Spastic Parapalegia (HSP), are associated with defects in Endoplasmic Reticulum (ER) morphogenesis, highlighting the significance of forming and maintaining proper ER structure in the context of human health. While the overall shape and structure adopted by the ER is mainly influenced by the lipid and protein composition of its membrane, fusion plays ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 39 شماره
صفحات -
تاریخ انتشار 2011