Interaction of Particles with Non-central Potential: Gradient Flows and Singular Solutions for Evolution of Geometric Continuum Quantities

نویسندگان

  • D. D. HOLM
  • V. PUTKARADZE
چکیده

Evolutionary PDEs for geometric order parameters that admit propagating singular solutions are introduced and discussed. These singular solutions arise as a result of the competition between nonlinear and nonlocal processes in various familiar vector spaces. Several examples are given. The motivating example is the directed self assembly of a large number of particles for technological purposes such as nano-science processes, in which the particle interactions are anisotropic. This application leads to the derivation and analysis of gradient flow equations on Lie algebra valued densities. The Riemannian structure of these gradient flow equations is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric gradient-flow dynamics with singular solutions

The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcy’s Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We iden...

متن کامل

Geometric evolution equations for order parameters

Energy-decreasing continuum flows of geometric order parameters are considered. The dynamics of pattern formation for an arbitrary geometric quantity is derived using a generalization of Darcy’s law based on the geometric nature of the order parameter. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanic...

متن کامل

An Analysis of the Perona-Malik Scheme

We investigate how the Perona-Malik scheme evolves piecewise smooth initial data in one dimension. By scaling a natural parameter that appears in the scheme in an appropriate way with respect to the grid size, we obtain a meaningful continuum limit. The resulting evolution can be seen as the gradient flow for an energy, just as the discrete evolutions are gradient flows for discrete energies. I...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Nonlocal Interactions by Repulsive-attractive Potentials: Radial Ins/stability

We investigate nonlocal interaction equations with repulsive-attractive radial potentials. Such equations describe the evolution of a continuum density of particles in which they repulse each other in the short range and attract each other in the long range. We prove that under some conditions on the potential, radially symmetric solutions converge exponentially fast in some transport distance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006