EPIC Spectral Observations of Variability in Earth's Global Reflectance
نویسندگان
چکیده
NASA’s Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space Climate Observatory (DSCOVR) satellite observes the entire sunlit Earth every 65 to 110 min from the Sun–Earth Lagrangian L1 point. This paper presents initial EPIC shortwave spectral observations of the sunlit Earth reflectance and analyses of its diurnal and seasonal variations. The results show that the reflectance depends mostly on (1) the ratio between land and ocean areas exposed to the Sun and (2) cloud spatial and temporal distributions over the sunlit side of Earth. In particular, the paper shows that (a) diurnal variations of the Earth’s reflectance are determined mostly by periodic changes in the land–ocean fraction of its the sunlit side; (b) the daily reflectance displays clear seasonal variations that are significant even without including the contributions from snow and ice in the polar regions (which can enhance daily mean reflectances by up to 2 to 6% in winter and up to 1 to 4% in summer); (c) the seasonal variations of the sunlit Earth reflectance are mostly determined by the latitudinal distribution of oceanic clouds.
منابع مشابه
Changes in Earth's reflectance over the past two decades.
We correlate an overlapping period of earthshine measurements of Earth's reflectance (from 1999 through mid-2001) with satellite observations of global cloud properties to construct from the latter a proxy measure of Earth's global shortwave reflectance. This proxy shows a steady decrease in Earth's reflectance from 1984 to 2000, with a strong climatologically significant drop after 1995. From ...
متن کاملMapping spatial variability of soil salinity in a coastal area located in an arid environment using geostatistical and correlation methods based on the satellite data
Saline lakes can increase the soil and water salinity of the coastal areas. The main aim of this study is to distinguish the characteristics of the spectral reflectance of saline soil, analyze the statistical relationship between soil EC and characteristics of the spectral reflectance of saline soil, and to map soil salinity east of the Maharloo Lake. The correlation between field measurements ...
متن کاملVegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants.
Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's st...
متن کاملارائۀ سادهترین نسبتهای طیفی بهمنظور تشخیص برخی خصوصیات شیمیایی خاک در مناطق خشک با استفاده از تکنیک دورسنجی (مطالعۀ موردی: کویر درۀ انجیر بافق)
Introduction Understanding the spectral reflectance of different soils and other surface elements forms the basis for analyzing the process of interpreting remote sensing data. Spectral properties of the various phenomena of the Earth's surface are not constant and are changing, based on the complex time and space conditions. Determination of soil chemical properties using remote sensing techni...
متن کاملChanges in Earth's albedo measured by satellite.
NASA global satellite data provide observations of Earth's albedo, i.e., the fraction of incident solar radiation that is reflected back to space. The satellite data show that the last four years are within natural variability and fail to confirm the 6% relative increase in albedo inferred from observations of earthshine from the moon. Longer global satellite records will be required to discern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018