Feedforward Initialization for Fast Inference of Deep Generative Networks is biologically plausible

نویسندگان

  • Yoshua Bengio
  • Benjamin Scellier
  • Olexa Bilaniuk
  • João Sacramento
  • Walter Senn
چکیده

We consider deep multi-layered generative models such as Boltzmann machines or Hopfield nets in which computation (which implements inference) is both recurrent and stochastic, but where the recurrence is not to model sequential structure, only to perform computation. We find conditions under which a simple feedforward computation is a very good initialization for inference, after the input units are clamped to observed values. It means that after the feedforward initialization, the recurrent network is very close to a fixed point of the network dynamics, where the energy gradient is 0. The main condition is that consecutive layers form a good auto-encoder, or more generally that different groups of inputs into the unit (in particular, bottom-up inputs on one hand, top-down inputs on the other hand) are consistent with each other, producing the same contribution into the total weighted sum of inputs. In biological terms, this would correspond to having each dendritic branch correctly predicting the aggregate input from all the dendritic branches, i.e., the soma potential. This is consistent with the prediction that the synaptic weights into dendritic branches such as those of the apical and basal dendrites of pyramidal cells are trained to minimize the prediction error made by the dendritic branch when the target is the somatic activity. Whereas previous work has shown how to achieve fast negative phase inference (when the model is unclamped) in a predictive recurrent model, this contribution helps to achieve fast positive phase inference (when the target output is clamped) in such recurrent neural models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Where Do Features Come From?

It is possible to learn multiple layers of non-linear features by backpropagating error derivatives through a feedforward neural network. This is a very effective learning procedure when there is a huge amount of labeled training data, but for many learning tasks very few labeled examples are available. In an effort to overcome the need for labeled data, several different generative models were...

متن کامل

Bidirectional Backpropagation: Towards Biologically Plausible Error Signal Transmission in Neural Networks

The back-propagation (BP) algorithm has been considered the de-facto method for training deep neural networks. It back-propagates errors from the output layer to the hidden layers in an exact manner using the transpose of the feedforward weights. However, it has been argued that this is not biologically plausible because back-propagating error signals with the exact incoming weights is not cons...

متن کامل

Why are deep nets reversible: A simple theory, with implications for training

Generative models for deep learning are promising both to improve understanding of the model, and yield training methods requiring fewer labeled samples. Recent works use generative model approaches to produce the deep net’s input given the value of a hidden layer several levels above. However, there is no accompanying “proof of correctness” for the generative model, showing that the feedforwar...

متن کامل

Variational Probability Flow for Biologically Plausible Training of Deep Neural Networks

The quest for biologically plausible deep learning is driven, not just by the desire to explain experimentally-observed properties of biological neural networks, but also by the hope of discovering more efficient methods for training artificial networks. In this paper, we propose a new algorithm named Variational Probably Flow (VPF), an extension of minimum probability flow for training binary ...

متن کامل

Variational Learning for Recurrent Spiking Networks

We derive a plausible learning rule for feedforward, feedback and lateral connections in a recurrent network of spiking neurons. Operating in the context of a generative model for distributions of spike sequences, the learning mechanism is derived from variational inference principles. The synaptic plasticity rules found are interesting in that they are strongly reminiscent of experimental Spik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.01651  شماره 

صفحات  -

تاریخ انتشار 2016