Evaluating Word Sense Induction and Disambiguation Methods

نویسندگان

  • Ioannis P. Klapaftis
  • Suresh Manandhar
چکیده

Word Sense Induction (WSI) is the task of identifying the different uses (senses) of a target word in a given text in an unsupervised manner, i.e. without relying on any external resources such as dictionaries or sense-tagged data. This paper presents a thorough description of the SemEval-2010 WSI task and a new evaluation setting for sense induction methods. Our contributions are two-fold: firstly, we provide a detailed analysis of the Semeval-2010 WSI task evaluation results and identify the shortcomings of current evaluation measures. Secondly, we present a new evaluation setting by assessing participating systems’ performance according to the skewness of target words’ distribution of senses showing that there are methods able to perform well above the Most Frequent Sense (MFS) baseline in highly skewed distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses

Most work on word sense disambiguation has assumed that word usages are best labeled with a single sense. However, contextual ambiguity or fine-grained senses can potentially enable multiple sense interpretations of a usage. We present a new SemEval task for evaluating Word Sense Induction and Disambiguation systems in a setting where instances may be labeled with multiple senses, weighted by t...

متن کامل

Graph Based Algorithms for Word Sense Induction and Disambiguation

This paper presents a survey of graph based methods for word sense induction and disambiguation. Many areas of Natural Language Processing like Word Sense Disambiguation (WSD), text summarization, keyword extraction make use of Graph based methods. The very idea behind graph based approach is to formulate the problems in graph setting and apply clustering to obtain a set of clusters (senses). T...

متن کامل

An Evaluation of Graded Sense Disambiguation using Word Sense Induction

Word Sense Disambiguation aims to label the sense of a word that best applies in a given context. Graded word sense disambiguation relaxes the single label assumption, allowing for multiple sense labels with varying degrees of applicability. Training multi-label classifiers for such a task requires substantial amounts of annotated data, which is currently not available. We consider an alternate...

متن کامل

Noun Sense Induction and Disambiguation using Graph-Based Distributional Semantics

We introduce an approach to word sense induction and disambiguation. The method is unsupervised and knowledge-free: sense representations are learned from distributional evidence and subsequently used to disambiguate word instances in context. These sense representations are obtained by clustering dependency-based secondorder similarity networks. We then add features for disambiguation from het...

متن کامل

Latent Semantic Word Sense Induction and Disambiguation

In this paper, we present a unified model for the automatic induction of word senses from text, and the subsequent disambiguation of particular word instances using the automatically extracted sense inventory. The induction step and the disambiguation step are based on the same principle: words and contexts are mapped to a limited number of topical dimensions in a latent semantic word space. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Language Resources and Evaluation

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2013