Mathematical Morphology on Hypergraphs: Preliminary Definitions and Results
نویسندگان
چکیده
In this article we introduce mathematical morphology on hypergraphs. We first define lattice structures and then mathematical morphology operators on hypergraphs. We show some relations between these operators and the hypergraph structure, considering in particular duality and similarity aspects.
منابع مشابه
Mathematical morphology on hypergraphs, application to similarity and positive kernel
The focus of this article is to develop mathematical morphology on hypergraphs. To this aim, we define lattice structures on hypergraphs on which we build mathematical morphology operators. We show some relations between these operators and the hypergraph structure, considering in particular transversals and duality notions. Then, as another contribution, we show how mathematical morphology can...
متن کاملSimilarity between Hypergraphs Based on Mathematical Morphology
In the framework of structural representations for applications in image understanding, we establish links between similarities, hypergraph theory and mathematical morphology. We propose new similarity measures and pseudo-metrics on lattices of hypergraphs based on morphological operators. New forms of these operators on hypergraphs are introduced as well. Some examples based on various dilatio...
متن کاملRobust similarity between hypergraphs based on valuations and mathematical morphology operators
This article aims at connecting concepts of similarity, hypergraph and mathematical morphology. We introduce new measures of similarity and study their relations with pseudometrics defined on lattices. More precisely, based on various lattices that can be defined on hypergraphs, we propose some similarity measures between hypergraphs based on valuations and mathematical morphology operators. We...
متن کاملno-homomorphism conditions for hypergraphs
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
متن کاملRelations on Hypergraphs
A relation on a hypergraph is a binary relation on the set consisting of the nodes and hyperedges together, and which satisfies a constraint involving the incidence structure of the hypergraph. These relations correspond to join-preserving mappings on the lattice of subhypergraphs. This paper studies the algebra of these relations, in particular the analogues of the familiar operations of compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011