The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case
نویسنده
چکیده
The constraint satisfaction probem (CSP) is a well-acknowledged framework in which many combinatorial search problems can be naturally formulated. The CSP may be viewed as the problem of deciding the truth of a logical sentence consisting of a conjunction of constraints, in front of which all variables are existentially quantified. The quantified constraint satisfaction problem (QCSP) is the generalization of the CSP where universal quantification is permitted in addition to existential quantification. The general intractability of these problems has motivated research studying the complexity of these problems under a restricted constraint language, which is a set of relations that can be used to express constraints. This paper introduces collapsibility, a technique for deriving positive complexity results on the QCSP. In particular, this technique allows one to show that, for a particular constraint language, the QCSP reduces to the CSP. We show that collapsibility applies to three known tractable cases of the QCSP that were originally studied using disparate proof techniques in different decades: QUANTIFIED 2-SAT (Aspvall, Plass, and Tarjan 1979), QUANTIFIED HORN-SAT (Karpinski, Kleine Büning, and Schmitt 1987), and QUANTIFIED AFFINE-SAT (Creignou, Khanna, and Sudan 2001). This reconciles and reveals common structure among these cases, which are describable by constraint languages over a two-element domain. In addition to unifying these known tractable cases, we study constraint languages over domains of larger size.
منابع مشابه
Collapsibility in Infinite-Domain Quantified Constraint Satisfaction
In this article, we study the quantified constraint satisfaction problem (QCSP) over infinite domains. We develop a technique called collapsibility that allows one to give strong complexity upper bounds on the QCSP. This technique makes use of both logical and universalalgebraic ideas. We give applications illustrating the use of our technique.
متن کاملQuantified Constraint Satisfaction and the Polynomially Generated Powers Property
The quantified constraint satisfaction probem (QCSP) is the problem of deciding, given a relational structure and a sentence consisting of a quantifier prefix followed by a conjunction of atomic formulas, whether or not the sentence is true in the structure. The general intractability of the QCSP has led to the study of restricted versions of this problem. In this article, we study restricted v...
متن کاملCollapsibility and Consistency in Quantified Constraint Satisfaction
The concept of consistency has pervaded studies of the constraint satisfaction problem. We introduce two concepts, which are inspired by consistency, for the more general framework of the quantified constraint satisfaction problem (QCSP). We use these concepts to derive, in a uniform fashion, proofs of polynomial-time tractability and corresponding algorithms for certain cases of the QCSP where...
متن کاملThe complexity of quantified constraints
Let A be an idempotent algebra on a finite domain. We combine results of Chen [11], Zhuk [24] and Carvalho et al. [7] to argue that if A satisfies the polynomially generated powers property (PGP), then QCSP(Inv(A)) is in NP. We then use the result of Zhuk to prove a converse, that if Inv(A) satisfies the exponentially generated powers property (EGP), then QCSP(Inv(A)) is co-NP-hard. Since Zhuk ...
متن کاملQuantified Constraint Satisfaction on Monoids
We contribute to a research program that aims to classify, for each finite structure, the computational complexity of the quantified constraint satisfaction problem on the structure. Employing an established algebraic viewpoint to studying this problem family, whereby this classification program can be phrased as a classification of algebras, we give a complete classification of all finite mono...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Comput.
دوره 37 شماره
صفحات -
تاریخ انتشار 2008