Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide.
نویسندگان
چکیده
We present time-gated femtosecond stimulated Raman spectroscopy (fSRS) under the pre-resonance Raman conditions of diethylthiatricarbocyanine (DTTC) iodide. A 'pseudo emission-free' condition is achieved by delivering the probe beam ahead of the pump beam. Regeneratively amplified pulse trains are employed to create an angle-geometry (non-collimated) mixing between the pump and probe beams, leading to highly sensitive measurement of the stimulated Raman gain. Time-integrated spectroscopy allows for a more quantitative distinction between the contributions of stimulated Raman scattering and stimulated emission. We successfully obtain a highly sensitive (signal-to-noise ratio >100) stimulated Raman spectrum under the optimized conditions, which compares favourably to results obtained using two-dimensional correlation spectroscopy (2DCOS). Given the optical pre-resonance of ∼0.1 eV, the background signals mostly originate from the stimulated emission of excited electrons and are significantly reduced by partial overlapping of the pump and probe beams; a genuine fSRS spectral profile is obtained for a temporal delay of ∼0.2 ps between the two beams.
منابع مشابه
Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.
Surface-enhanced Raman spectroscopy (SERS) and femtosecond stimulated Raman spectroscopy (FSRS) have revolutionized the Raman spectroscopy field. SERS provides spectroscopic detection of single molecules, and FSRS enables the acquisition of Raman spectra on the ultrafast time scale of molecular motion. Here, we present the first successful combination of these two techniques, demonstrating surf...
متن کاملFemtosecond time-resolved Raman spectroscopy using stimulated Raman scattering
Femtosecond Raman spectroscopy has been developed to investigate ultrafast photoinduced structural changes of materials. Vibrational modes in the photogenerated transient species are measured by stimulated Raman scattering using a Raman pump pulse with narrow bandwidth and a femtosecond supercontinuum probe pulse. The Raman signal can be measured without slowing the temporal response and broade...
متن کاملImproved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering
Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) w...
متن کاملAnalysis of time resolved femtosecond and femtosecond/picosecond coherent anti-Stokes Raman spectroscopy: application to toluene and Rhodamine 6G.
The third-order polarization for coherent anti-Stokes Raman scattering (CARS) from a pure state is described by 48 terms in perturbation theory, but only 4 terms satisfy the rotating wave approximation. They are represented by Feynman dual time-line diagrams and four-wave mixing energy level diagrams. In time-resolved (tr) fs and fs/ps CARS from the ground vibrational state, one resonant diagra...
متن کاملControlling multidimensional off-resonant-Raman and infrared vibrational spectroscopy by finite pulse band shapes.
Closed expressions are derived which incorporate pulse shaping effects in femtosecond nonlinear optical signals involving various combinations of temporally well-separated vibrationally resonant infrared and electronically off-resonant Raman pulses. Combinations of broadband and narrow band pulses that yield multidimensional extensions of coherent anti-Stokes Raman and sum frequency generation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 11 شماره
صفحات -
تاریخ انتشار 2014