Array bounds check elimination in the context of deoptimization

نویسندگان

  • Thomas Würthinger
  • Christian Wimmer
  • Hanspeter Mössenböck
چکیده

Whenever an array element is accessed, Java virtual machines execute a compare instruction to ensure that the index value is within the valid bounds. This reduces the execution speed of Java programs. Array bounds check elimination identifies situations in which such checks are redundant and can be removed. We present an array bounds check elimination algorithm for the Java HotSpot VM based on static analysis in the just-in-time compiler. The algorithm works on an intermediate representation in static single assignment form and maintains conditions for index expressions. It fully removes bounds checks if it can be proven that they never fail. Whenever possible, it moves bounds checks out of loops. The static number of checks remains the same, but a check inside a loop is likely to be executed more often. If such a check fails, the executing program falls back to interpreted mode, avoiding the problem that an exception is thrown at the wrong place. The evaluation shows a speedup near to the theoretical maximum for the scientific SciMark benchmark suite and also significant improvements for some Java Grande benchmarks. The algorithm slightly increases the execution speed for the SPECjvm98 benchmark suite. The evaluation of the DaCapo benchmarks shows that array bounds checks do not have a significant impact on the performance of object-oriented applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Safe, multiphase bounds check elimination in Java

As part of its type-safety regime, the Java semantics require precise exceptions at runtime when programs attempt out-of-bound array accesses. This paper describes a Java implementation that utilizes a multiphase approach to identifying safe array accesses. This approach reduces runtime overhead by spreading the out-of-bounds checking effort across three phases of compilation and execution: pro...

متن کامل

Deriving Pre-conditions for Array Bound Check Elimination

We present a high-level approach to array bound check optimization that is neither hampered by recursive functions, nor disabled by the presence of partially redundant checks. Our approach combines a forward analysis to infer precise contextual constraint at designated program points, and a backward method for deriving a safety pre-condition for each bound check. Both analyses are formulated wi...

متن کامل

Subregion Analysis and Bounds Check Elimination for High Level Arrays

For decades, the design and implementation of arrays in programming languages has reflected a natural tension between productivity and performance. Recently introduced HPCS languages (Chapel, Fortress and X10) advocate the use of high-level arrays for improved productivity. For example, high-level arrays in the X10 language support rank-independent specification of multidimensional loop and arr...

متن کامل

Certification of Compiler Optimizations Using Kleene Algebra with Tests

We use Kleene algebra with tests to verify a wide assortment of common compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant instructions, array bounds check elimination, and introduction of sentinels. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sci. Comput. Program.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2009