2 1 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds

نویسندگان

  • Bing - Long Chen
  • Xi - Ping Zhu
چکیده

The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on complete noncompact manifolds is still an open question. Recently it was found that the uniqueness of the Ricci flow on complete noncompact manifolds is important in the theory of the Ricci flow with surgery. In this paper, we give an affirmative answer for the uniqueness question. More precisely, we prove that the solution of the Ricci flow with bounded curvature on a complete noncompact manifold is unique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 05 44 7 v 3 [ m at h . D G ] 2 7 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds Bing

The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...

متن کامل

2 6 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds Bing - Long Chen and Xi - Ping Zhu

The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...

متن کامل

Uniqueness of Solutions of Ricci Flow on Complete Noncompact Manifolds

We prove the uniqueness of solutions of the Ricci flow on complete noncompact manifolds with bounded curvatures using the De Turck approach. As a consequence we obtain a correct proof of the existence of solution of the Ricci harmonic flow on complete noncompact manifolds with bounded curvatures. Recently there is a lot of study on the Ricci flow on manifolds by R. Hamilton [H1–6], S.Y. Hsu [Hs...

متن کامل

Ricci Flow with Surgery on Four-manifolds with Positive Isotropic Curvature

In this paper we study the Ricci flow on compact four-manifolds with positive isotropic curvature and with no essential incompressible space form. Our purpose is two-fold. One is to give a complete proof of the main theorem of Hamilton in [17]; the other is to extend some results of Perelman [26], [27] to four-manifolds. During the the proof we have actually provided, up to slight modifications...

متن کامل

On the asymptotic scalar curvature ratio of complete Type I-like ancient solutions to the Ricci flow on noncompact 3-manifolds

Complete noncompact Riemannian manifolds with nonnegative sectional curvature arise naturally in the Ricci flow when one takes the limits of dilations about a singularity of a solution of the Ricci flow on a compact 3-manifold [ H-95a]. To analyze the singularities in the Ricci flow one needs to understand these manifolds in depth. There are three invariants, asymptotic scalar curvature ratio, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005