Turbulence in protein folding: Vorticity, scaling and diffusion of probability flows

نویسندگان

  • Vladimir A Andryushchenko
  • Sergei F Chekmarev
چکیده

Recently, when studying folding of a SH3 domain, we discovered that the flows of transitions between protein states can be surprisingly similar to turbulent fluid flows. This similarity was not restricted by a vortex pattern of the flow fields but extended to a spatial correlation of flow fluctuations, resulting, in particular, in the structure functions such as in the Kolmogorov theory of homogeneous and isotropic turbulence. Here, we undertake a detailed analysis of spatial distribution of folding flows and their similarity to turbulent fluid flows. Using molecular dynamics simulations, we study folding of another benchmark system-Trp-cage miniprotein, which has different content of secondary structure elements and mechanism of folding. Calculating the probability fluxes of transitions in a three-dimensional space of collective variables, we have found that similar to the SH3 domain, the structure functions of the second and third orders correspond to the Kolmogorov functions. The spatial distributions of the probability fluxes are self-similar with a fractal dimension, and the fractal index decreases toward the native state, indicating that the flow becomes more turbulent as the native state is approached. We also show that the process of folding can be viewed as Brownian diffusion in the space of probability fluxes. The diffusion coefficient plays a role of the key parameter that defines the structures functions, similar to the rate of dissipation of kinetic energy in hydrodynamic turbulence. The obtained results, first, show that the very complex dynamics of protein folding allows a simple characterization in terms of scaling and diffusion of probability fluxes, and, secondly, they suggest that the turbulence phenomena similar to hydrodynamic turbulence are not specific of folding of a particular protein but are common to protein folding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Structure Eduction in Wavelet-forced Two-dimensional Turbulent Flows

We analyze vorticity fields obtained from direct numerical simulations (DNS) of statistically stationary two-dimensional turbulence where the forcing is done in wavelet space. We introduce a new eduction method for extracting coherent structures from two-dimensional turbulent flows. Using a nonlinear wavelet technique based on an objective universal threshold we separate the vorticity field int...

متن کامل

Anisotropy of the Lundgren-Townsend model of fine-scale turbulence

The effect of a statistically anisotropic distribution of stretched vortices in the LundgrenTownsend model of the fine-scale structure of homogeneous turbulence is considered. Lundgren’s argument that anisotropy does not affect the three-dimensional energy spectrum is confirmed. Examples of velocity derivative moments and one-dimensional vorticity spectra are worked out for the case of an axisy...

متن کامل

Synthetic Controllable Turbulence Using Robust Second Vorticity Confinement

Capturing fine details of turbulence on a coarse grid is one of the main tasks in real-time fluid simulation. Existing methods for doing this have various limitations. In this paper, we propose a new turbulence method that uses a refined second vorticity confinement method, referred to as robust second vorticity confinement, and a synthesis scheme to create highly turbulent effects from coarse ...

متن کامل

Effect of enhanced dissipation by shear flows on transient relaxation and probability density function in two dimensions

We report a non-perturbative study of the effects of shear flows on turbulence reduction in a decaying turbulence in two dimensions. By considering different initial power spectra and shear flows (zonal flows, combined zonal flows and streamers), we demonstrate how shear flows rapidly generate small scales, leading to a fast damping of turbulence amplitude. In particular, a double exponential d...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017