Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

نویسندگان

  • Yuexiang Li
  • LinLin Shen
چکیده

Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Image Classification of Melanoma, Nevus and Seborrheic Keratosis by Deep Neural Network Ensemble

This short paper reports the method and the evaluation results of Casio and Shinshu University joint team for the ISBI Challenge 2017 – Skin Lesion Analysis Towards Melanoma Detection – Part 3: Lesion Classification hosted by ISIC. Our online validation score was 0.958 with melanoma classifier AUC 0.924 and seborrheic keratosis classifier AUC 0.993.

متن کامل

Transfer Learning for Melanoma Detection: Participation in ISIC 2017 Skin Lesion Classification Challenge

This manuscript describes our participation in the International Skin Imaging Collaboration’s 2017 Skin Lesion Analysis Towards Melanoma Detection competition. We participated in Part 3: Lesion Classification. The two stated goals of this binary image classification challenge were to distinguish between (a) melanoma and (b) nevus and seborrheic keratosis, followed by distinguishing between (a) ...

متن کامل

A Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and Classification

In this study, a multi-task deep neural network is proposed for skin lesion analysis. The proposed multi-task learning model solves different tasks (e.g., lesion segmentation and two independent binary lesion classifications) at the same time by exploiting commonalities and differences across tasks. This results in improved learning efficiency and potential prediction accuracy for the task-spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018