CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression
نویسندگان
چکیده
Epithelial-mesenchymal transition is a change of cellular plasticity critical for embryonic development and tumor metastasis. CDK5 is a proline-directed serine/threonine kinase playing important roles in cancer progression. Here we show that CDK5 is commonly overexpressed and significantly correlated with several poor prognostic parameters of breast cancer. We found that CDK5 participated in TGF-β1-induced EMT. In MCF10A, TGF-β1 upregulated the CDK5 and p35 expression, and CDK5 knockdown inhibited TGF-β1-induced EMT. CDK5 overexpression also exhibited a potential synergy in promoting TGF-β1-induced EMT. In mesenchymal breast cancer cells MDA-MB-231 and BT549, CDK5 knockdown suppressed cell motility and tumorigenesis. We further demonstrated that CDK5 modulated cancer cell migration and tumor formation by regulating the phosphorylation of FAK at Ser-732. Therefore, CDK5-FAK pathway, as a downstream step of TGF-β1 signaling, is essential for EMT and motility in breast cancer cells. This study implicates the potential value of CDK5 as a molecular marker for breast cancer.
منابع مشابه
ERRATUM: CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression
The details for affiliations 1–3 were incorrect in the original HTML version of this Article. The affiliations were incorrectly listed as including ‘‘Auckland, New Zealand’’. These affiliations should include ‘‘Changchun, China’’. The correct affiliations are listed above. This has now been corrected in theHTML and PDF version of the Article. SUBJECT AREAS: CANCER BREAST CANCER CELL SIGNALLING ...
متن کاملSuppression of CUL4A attenuates TGF-β1-induced epithelial-to-mesenchymal transition in breast cancer cells
Transforming growth factor-β1 (TGF-β1) plays a vital role in the process of epithelial-to-mesenchymal transition (EMT) in breast cancer and the cullin 4A (CUL4A) gene is overexpressed in primary breast cancer. However, whether TGF-β1 signaling can induce CUL4A expression has not been investigated to date, at least to the best of our knowledge. In this study, using breast cancer cell lines, we f...
متن کاملLncRNA ANCR down-regulation promotes TGF-β-induced EMT and metastasis in breast cancer
Epithelial to mesenchymal transition (EMT) is a progression of cellular plasticity critical for development, differentiation, cancer cells migration and tumor metastasis. As a well-studied factor, TGF-β participates in EMT and involves in physiological and pathological functions of tumor progression. Accumulating evidence indicates that long noncoding RNAs(lncRNAs) play crucial roles in EMT and...
متن کاملTGF-β1 induces HMGA1 expression in human breast cancer cells: Implications of the involvement of HMGA1 in TGF-β signaling
Transforming growth factor-β1 (TGF-β1) signaling and high mobility group A (HMGA1) are known to play essential roles in the progression of breast cancer by inducing epithelial-mesenchymal transition. However, the correlation between TGF-β1 and HMGA1 in breast cancer cell is not yet well understood. In this study, we determined the effects of TGF-β1 on HMGA1 expression in breast cancer cells and...
متن کاملMesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β.
Although the epithelial-mesenchymal transition (EMT) is a normal process that occurs during development, it is thought to be associated with cancer progression and metastasis. Emerging evidence links mesenchymal stem cells (MSCs) in the tumor microenvironment with the occurrence of EMT in cancer progression. In this study, the human breast cancer cell line MCF7 was co-cultured with human adipos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013