Lipoxygenase-dependent superoxide release in skeletal muscle.
نویسندگان
چکیده
Superoxide anion radical (O(2)(*-)) is released from skeletal muscle at rest and is particularly elevated during conditions of heat stress (42 degrees C). Previous studies have shown that in isolated rat diaphragm O(2)(*-) release is not dependent on mitochondrial electron transport, reduced NADP oxidase activity, or the integrity of membrane anion channels. This study hypothesized that O(2)(*-) release, as measured by cytochrome c reduction, is linked to metabolism of arachidonic acid. Phospholipase A(2) inhibition with manoalide significantly decreased O(2)(*-) release. In downstream pathways, neither the blockage of cyclooxygenase with indomethacin nor the inhibition of cytochrome P-450-dependent monooxygenase with SKF-525A decreased O(2)(*-) release. However, lipoxygenase (LOX) inhibition with general LOX blockers 5,8,11,14-eicosatetraynoic acid and cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate greatly attenuated the signal. Furthermore, the specific 5-LOX inhibitor diethylcarbamazine also significantly decreased O(2)(*-) release. Immunohistochemistry localized 5- and 12-LOX to the cytosol and sarcolemma of muscle cells. Confocal studies, using the O(2)(*-)-sensitive fluorescent indicator hydroethidine, demonstrated that LOX inhibition had no significant influence on intracellular O(2)(*-) formation. When compared with the cytochrome c results, this indicates that intra- and extracellular O(2)(*-) must arise from different sources. These data show for the first time that arachidonic acid metabolism through LOX activity, is a major source of extracellular O(2)(*-) release in skeletal muscle.
منابع مشابه
Neutrophil signal transduction in Met-enkephalin modulated superoxide anion release.
The present study explored the involvement of signal transduction system(s) in Met-enkephalin (MENK) modulated superoxide anion (O2-) release from human neutrophils. This opioid pentapeptide stimulated the O2- release in all samples if present at 10(-8) M concentration while in lower concentrations the stimulatory concentration was donor-dependent. The most abundant product of MENK degradation,...
متن کاملSkeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide.
Skeletal muscle sarcoplasmic reticulum (SR) is shown to contain an NADH-dependent oxidase (NOX) that reduces molecular oxygen to generate superoxide. Its activity is coupled to an activation of the Ca2+ release mechanism, as evident by stimulation in the rate of high-affinity ryanodine binding. NOX activity, coupled to the production of superoxide, is not derived from the mitochondria but is SR...
متن کاملReactive oxygen species are important mediators of taurine release from skeletal muscle cells.
The present study illustrates elements of the signal cascades involved in the activation of taurine efflux pathways in myotubes derived from skeletal muscle cells. Exposing primary skeletal muscle cells, loaded with (14)C-taurine, to 1) hypotonic media, 2) the phospholipase A(2) (PLA(2)) activator melittin, 3) anoxia, or 4) lysophosphatidyl choline (LPC) causes an increase in (14)C-taurine rele...
متن کاملAge-dependent uncoupling of mitochondria from Ca2+ release units in skeletal muscle
Calcium release units (CRUs) and mitochondria control myoplasmic [Ca2+] levels and ATP production in muscle, respectively. We recently reported that these two organelles are structurally connected by tethers, which promote proximity and proper Ca2+ signaling.Here we show that disposition, ultrastructure, and density of CRUs and mitochondria and their reciprocal association are compromised in mu...
متن کاملAsymmetric superoxide release inside and outside the mitochondria in skeletal muscle under conditions of aging and disuse.
Superoxide released from mitochondria forms reactive oxygen species that can cause severe oxidative damage and have been associated with aging- and disuse-induced muscle dysfunction. Superoxide is released to both the exterior and the matrix of mitochondria, where oxidative damage is not necessarily the same. This complicates determining the role of mitochondrial superoxide in eliciting oxidati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2004