Rac1 mediates collapsin-1-induced growth cone collapse.
نویسندگان
چکیده
Collapsin-1 or semaphorin III(D) inhibits axonal outgrowth by collapsing the lamellipodial and filopodial structures of the neuronal growth cones. Because growth cone collapse is associated with actin depolymerization, we considered whether small GTP-binding proteins of the rho subfamily might participate in collapsin-1 signal transduction. Recombinant rho, rac1, and cdc42 proteins were triturated into embryonic chick (DRG) neurons. Constitutively active rac1 increases the proportion of collapsed growth cones, and dominant negative rac1 inhibits collapsin-1-induced collapse of growth cones and collapsin-1 inhibition of neurite outgrowth. DRG neurons treated with dominant negative rac1 remain sensitive to myelin-induced growth cone collapse. Similar mutants of cdc42 do not alter growth cone structure, neurite elongation, or collapsin-1 sensitivity. Whereas the addition of activated rho has no effect, the inhibition of rho with Clostridium botulinum C3 transferase stimulates the outgrowth of DRG neurites. C3 transferase-treated growth cones exhibit little or no lamellipodial spreading and are minimally responsive to collapsin-1 and myelin. These data demonstrate a prominent role for rho and rac1 in modulating growth cone motility and indicate that rac1 may mediate collapsin-1 action.
منابع مشابه
Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1.
Precise growth cone guidance is the consequence of a continuous reorganization of actin filament structures within filopodia and lamellipodia in response to inhibitory and promoting cues. The small GTPases rac1, cdc42, and rhoA are critical for regulating distinct actin structures in non-neuronal cells and presumably in growth cones. Collapse, a retraction of filopodia and lamellipodia, is a ty...
متن کاملCRMP collapsin response mediator protein DRGs dorsal root ganglions neurons GEFs guanine nucleotide exchange factors GAPs GTPase activating proteins GDIs guanine dissociation inhibitors LPA lysophosphatidic acid
For many growing axons, interaction with an extracelluar Semaphorin signal leads to growth cone collapse and axon repulsion. Semaphorin receptors composed of Neuropilins and Plexins transduce extracellular cues into changes in the growth cone actin cytoskeleton. The data implicating Rho family G proteins in Semaphorin signaling and in other axon guidance events are considered here. Recent work ...
متن کاملThioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse.
Semaphorin3A (Sema3A) is a repulsive guidance molecule for axons, which acts by inducing growth cone collapse through phosphorylation of CRMP2 (collapsin response mediator protein 2). Here, we show a role for CRMP2 oxidation and thioredoxin (TRX) in the regulation of CRMP2 phosphorylation and growth cone collapse. Sema3A stimulation generated hydrogen peroxide (H2O2) through MICAL (molecule int...
متن کاملRac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse.
Negative guidance molecules are important for guiding the growth of axons and ultimately for determining the wiring pattern in the developing nervous system. In tissue culture, growth cones at the tips of growing axons collapse in response to negative guidance molecules, such as ephrin-A2 and semaphorin 3A. The small GTPase Rac1 is involved in growth cone collapse, but the nature of its role is...
متن کاملSema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17–32
BACKGROUND Neurons project their axons along specific pathways in order to establish appropriate connections with their target cells. The rate and direction of axonal growth is determined by interactions between the highly motile growth cone and environmental cues that can act in either an attractive or a repulsive manner. Locomotion is ultimately dependent upon the reorganisation of the actin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 16 شماره
صفحات -
تاریخ انتشار 1997