Sparse-matrix vector multiplication on hybrid CPU+GPU platform

نویسندگان

  • Sivaramakrishna Bharadwaj
  • Kishore Kothapalli
چکیده

Sparse-matrix vector multiplication(Spmv) is a basic operation in many linear algebra kernels.So it is interesting to have a spmv on modern architectures like GPU. As it is a irregular computation CPU also performs compares to GPU. So it is interesting to have this routine in hybrid architectures like CPU+GPU.So we have designed a hybrid algorithm for Spmv which uses a CPU and a GPU. We have experimented two different hybrid architectures, 6-core Intel i7-980X CPU + NVidia GTX 280 GPU which is a high end platform and Intel dual core CPU + NVidia GT 520 GPU which is a low end platform. The results show a speed up to 30% and 50% compared to cusp library implementation of Spmv on high end and low end respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Sparse Matrix-Matrix Multiplication on a Heterogeneous CPU-GPU Platform

Sparse Matrix-Matrix multiplication (SpMM) is a fundamental operation over irregular data, which is widely used in graph algorithms, such as finding minimum spanning trees and shortest paths. In this work, we present a hybrid CPU and GPU-based parallel SpMM algorithm to improve the performance of SpMM. First, we improve data locality by element-wise multiplication. Second, we utilize the ordere...

متن کامل

Heterogeneous Sparse Matrix Computations on Hybrid GPU/CPU Platforms

Hybrid GPU/CPU clusters are becoming very popular in the scientific computing community, as attested by the number of such systems present in the Top 500 list. In this paper, we address one of the key algorithms for scientific applications: the computation of sparse matrix-vector products that lies at the heart of iterative solvers for sparse linear systems. We detail how design patterns for sp...

متن کامل

Sparse Matrix-vector Multiplication on Nvidia Gpu

In this paper, we present our work on developing a new matrix format and a new sparse matrix-vector multiplication algorithm. The matrix format is HEC, which is a hybrid format. This matrix format is efficient for sparse matrix-vector multiplication and is friendly to preconditioner. Numerical experiments show that our sparse matrix-vector multiplication algorithm is efficient on

متن کامل

GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication

Many high performance computing applications require computing both sparse matrix-vector product (SMVP) and sparse matrix-transpose vector product (SMTVP) for better overall performance. Under such a circumstance, it is critical to maintain a similarly high throughput for these two computing patterns with the underlying sparse matrix encoded in a single storage format. The compressed sparse blo...

متن کامل

Effective Sparse Matrix Representation for the GPU Architectures

General purpose computation on graphics processing unit (GPU) is prominent in the high performance computing era of this time. Porting or accelerating the data parallel applications onto GPU gives the default performance improvement because of the increased computational units. Better performances can be seen if application specific fine tuning is done with respect to the architecture under con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012