In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4'- and 10-hydroxywarfarin.
نویسندگان
چکیده
It has been demonstrated that the activity of cytochrome P450 (CYP)3A4 in certain cases is stimulated by quinidine (positive heterotropic cooperativity). We report herein that the 4'- and 10-hydroxylation of S- and R-warfarin are enhanced in human liver microsomal incubations containing quinidine. These reactions were catalyzed by CYP3A4, based on data derived from immunoinhibitory studies, with 4'-hydroxylation being preferentially associated with S-warfarin and 10-hydroxylation with R-warfarin. The 4'-hydroxylation of S-warfarin and 10-hydroxylation of R-warfarin increased with increasing quinidine concentrations and maximized at ~3- and 5-fold the values of controls, respectively. Stimulatory effects of quinidine also were observed with recombinant CYP3A4, suggesting that increases in warfarin metabolism were due to quinidine-mediated enhancement of CYP3A4 activity. This positive cooperativity of CYP3A4 was characterized by a 2.5-fold increase in V(max) for the 4'-hydroxylation of S-warfarin and a 5-fold increase in V(max) for the 10-hydroxylation of R-warfarin, with little change in K(m) values. Conversely, V(max) for the 3-hydroxylation of quinidine was not influenced by the presence of warfarin. These results are consistent with previous findings suggesting the existence of more than one binding site in CYP3A4 through which interactions may occur between substrate and effector at the active site of the enzyme. Such interactions were subsequently illustrated by a kinetic model containing two binding domains, and a good regression fit was obtained for the experimental data. Finally, stimulation of warfarin metabolism by quinidine was investigated in suspensions of human hepatocytes, and increases in the formation of 4'- and 10-hydroxywarfarin again were observed in the presence of quinidine, indicating that this type of drug-drug interaction occurs in intact cells.
منابع مشابه
CYP2C9-catalyzed metabolism of S-warfarin to 7-hydroxywarfarin in vivo and in vitro in chimeric mice with humanized liver.
Chimeric mice having humanized livers were constructed by transplantation of human hepatocytes. In this study, we investigated whether these mice have a capacity for drug metabolism similar to that of humans by examining hydroxylation of S-warfarin, which is predominantly metabolized to S-7-hydroxywarfarin, catalyzed by CYP2C9, in humans but not mice. The 7-hydroxylating activity of chimeric mo...
متن کاملWarfarin. Stereochemical aspects of its metabolism and the interaction with phenylbutazone.
An examination of the metabolic fate of the R and the S isomers of warfarin revealed that the two isomers were metabolized by different routes. R warfarin was oxidized to 6-hydroxywarfarin and was reduced to the (R,S) warfarin alcohol. In contrast, S warfarin was oxidized to 7-hydroxywarfarin and was reduced to the (S,S) warfarin alcohol. S warfarin was also oxidized to 6-hydroxywarfarin. These...
متن کاملGlucuronidation of monohydroxylated warfarin metabolites by human liver microsomes and human recombinant UDP-glucuronosyltransferases.
Our understanding of human phase II metabolic pathways which facilitate detoxification and excretion of warfarin (Coumadin) is limited. The goal of this study was to test the hypothesis that there are specific human hepatic and extrahepatic UDP-glucuronosyltransferase (UGT) isozymes, which are responsible for conjugating warfarin and hydroxylated metabolites of warfarin. Glucuronidation activit...
متن کاملWarfarin metabolism in man: identification of metabolites in urine.
After administration of the coumarin anticoagulant racemic warfarin to normal humans, seven fluorescent compounds were chromatographically separated from extracts of their urine. Four of these were identified using mass spectrometry, thin-layer chromatography, and ultraviolet absorption spectroscopy. One metabolic pathway, reduction of the acetonyl side chain of warfarin, resulted in the format...
متن کاملThe effect of acute administration of quinidine, dextromethorphan and combination of dextromethorphan/quinidine on pentylenetetrazole-induced clonic and tonic seizure thresholds in mice
Background: Dextromethorphan (DM) as a non-opioid anti-cough has neuroprotective effects. Combination of DM with quinidine decreases rapid metabolism of DM to dextrorphan (DX). This study aimed to examine the effects of acute administration of quinidine, DM and combination of dextromethorphan/quinidine (DM/Q) on pentylenetetrazole (PTZ)-induced clonic and tonic seizure thresholds in mice. Mater...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2001