Bone morphogenetic protein 4 modulates c-Kit expression and differentiation potential in murine embryonic aorta-gonad-mesonephros haematopoiesis in vitro
نویسندگان
چکیده
The transforming growth factor-beta-related factor bone morphogenetic protein 4 (BMP4) is expressed in the human embryonic aorta-gonad-mesonephros (AGM) coincident with the emergence of haematopoietic cells and influences postnatal mammalian haematopoietic stem cells in vitro. To investigate the role of BMP4 in mammalian embryonic haematopoiesis, cells were isolated from murine AGM and two populations of CD34(+) cells with different levels of c-Kit expression and multipotency were identified. CD34(+)/c-Kit(high) cells express CD45 and are haematopoietic-restricted progenitors. In contrast, CD34(+)/c-Kit(low) cells are Flk1+/CD45(neg) and generate adherent colonies in ex vivo culture that resemble haemangioblast colonies identified in other systems. The addition of BMP4 to AGM cells resulted in expansion of the CD34(+)/c-Kit(low) cell pool within 48 h, via a combination of down modulation of the c-Kit receptor in CD34(+)/c-Kit(high) cells and proliferation. In long-term culture, BMP4 increased the growth/survival of CD34(+)/c-Kit(high) haematopoietic progenitors, effects that were blocked by BMP inhibitors. CD34(+)/c-Kit(high) progenitors cultured with BMP4 also generated adherent colonies typical of c-Kit(low) cells. These results suggest that BMP4 regulates c-Kit expression and differentiation potential in CD34(+) AGM cells and supports a role for BMP signalling in the maintenance of multipotency during embryonic haematopoiesis, providing an insight into stem cell homeostasis within the mammalian haematopoietic niche.
منابع مشابه
Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملPolarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region.
In the mammal, definitive hematopoietic stem cells (HSCs) are first derived from mesodermal cells within a region of the embryonic para-aortic splanchnopleura known as the aorta-gonad-mesonephros (AGM). Within this region, HSCs are thought to arise from hemangioblast precursors located in the ventral wall of the dorsal aorta. However, the factors that regulate HSC development in vivo are still ...
متن کاملBrief report Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region
In the mammal, definitive hematopoietic stem cells (HSCs) are first derived from mesodermal cells within a region of the embryonic para-aortic splanchnopleura known as the aorta-gonad-mesonephros (AGM). Within this region, HSCs are thought to arise from hemangioblast precursors located in the ventral wall of the dorsal aorta. However, the factors that regulate HSC development in vivo are still ...
متن کاملHematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium.
Hematopoietic stem cells are capable of extensive self-renewal and expansion, particularly during embryonic growth. Although the molecular mechanisms involved with stem cell maintenance remain mysterious, it is now clear that an intraembryonic location, the aorta-gonad-mesonephros (AGM) region, is a site of residence and, potentially, amplification of the definitive hematopoietic stem cells tha...
متن کاملSurface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells.
Surface antigens on hematopoietic stem cells (HSCs) enable prospective isolation and characterization. Here, we compare the cell-surface phenotype of hematopoietic repopulating cells from murine yolk sac, aorta-gonad-mesonephros, placenta, fetal liver, and bone marrow with that of HSCs derived from the in vitro differentiation of murine embryonic stem cells (ESC-HSCs). Whereas c-Kit marks all H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- British Journal of Haematology
دوره 139 شماره
صفحات -
تاریخ انتشار 2007