Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems
نویسنده
چکیده
Tensor decompositions and tensor networks are emerging and promising tools for data analysis and data mining. In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions.
منابع مشابه
Application of Big Data Analytics in Power Distribution Network
Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...
متن کاملEra of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions
Many problems in computational neuroscience, neuroinformatics, pattern/image recognition, signal processing and machine learning generate massive amounts of multidimensional data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide often a natural and compact representation for such massive multidimensional data via suitable low-rank approximations. Big data a...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملTensor Decompositions for Very Large Scale Problems
Modern applications such as neuroscience, text mining, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide a natural representation for such massive data. Consequently, tensor decompositions and factorizations are emerging as novel and promising tools for exploratory analysis of multidimensional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.3124 شماره
صفحات -
تاریخ انتشار 2014