Hesperetin alleviates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro
نویسندگان
چکیده
Hesperetin (HES) is a flavonoid that has been reported to exert protective effects against cardiac remodeling, lung fibrosis and hepatic fibrosis. However, reports on the effects and potential mechanisms of HES in renal fibrosis are limited. In the present study, a unilateral ureteric obstruction (UUO) mouse model and a transforming growth factor (TGF)-β1-activated normal rat kidney (NRK)-52E cell model were established. HES was subsequently administered to these models to evaluate its anti-fibrotic effects and potential underlying mechanisms of action. The results demonstrated that HES reduced obstruction-induced renal injury and deposition of the extracellular matrix components collagen-I and fibronectin in UUO mouse kidneys (P<0.05). Furthermore, HES treatment significantly suppressed EMT, as evidenced by decreased expression of α-smooth muscle actin and E-cadherin, (P<0.05). Additionally, HES inhibited the hedgehog signaling pathway in UUO mice and TGF-β1-treated NRK-52E cells. The present findings indicate that HES treatment may inhibit EMT and renal fibrosis in vivo and in vitro by antagonizing the hedgehog signaling pathway.
منابع مشابه
Sedum sarmentosum Bunge extract exerts renal anti-fibrotic effects in vivo and in vitro.
AIMS Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical effects, including anti-oxidation, anti-inflammation, and anti-cancer properties. In this study, we determined whether S. sarmentosum Bunge Extract (SSBE) has anti-fibrotic effects on renal tissues. MAIN METHODS We investigated the effects of SSBE on aristolochic acid (AA)-induced injury to renal...
متن کاملNorcantharidin Inhibits Renal Interstitial Fibrosis by Blocking the Tubular Epithelial-Mesenchymal Transition
Epithelial-mesenchymal transition (EMT) is thought to contribute to the progression of renal tubulointerstitial fibrosis. Norcantharidin (NCTD) is a promising agent for inhibiting renal interstitial fibrosis. However, the molecular mechanisms of NCTD are unclear. In this study, a unilateral ureteral obstruction (UUO) rat model was established and treated with intraperitoneal NCTD (0.1 mg/kg/day...
متن کاملHSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy.
Although heat shock protein 72 kDa (HSP72) protects tubular epithelium from a variety of acute insults, its role in chronic renal injury and fibrosis is poorly characterized. In this study, we tested the hypothesis that HSP72 reduces apoptosis and epithelial-to-mesenchymal transition (EMT), important contributors to tubular cell injury in vitro and in vivo. In rats, orally administered geranylg...
متن کاملRenalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral urete...
متن کاملRole for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis.
Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2017