Learning Task-Specific Trust Decisions (Short Paper)
نویسندگان
چکیده
We study the problem of agents locating other agents that are both capable and willing to help complete assigned tasks. An agent incurs a fixed cost for each help request it sends out. To minimize this cost, the performance metric used in our work, an agent should learn based on past interactions to identify agents likely to help on a given task. We compare three trust mechanisms: success-based, learning-based, and random. We also consider different agent social attitudes: selfish, reciprocative, and helpful. We evaluate the performance of these social attitudes with both homogeneous and mixed societies. Our results show that learning-based trust decisions consistently performed better than other schemes. We also observed that the success rate is significantly better for reciprocative agents over selfish agents.
منابع مشابه
DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملBehavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geogra...
متن کاملAdapting Reinforcement Learning For Trust: Effective Modeling in Dynamic Environments
In open multiagent systems, agents need to model their environments in order to identify trustworthy agents. Models of the environment should be accurate so that decisions about whom to interact with can be done soundly. Traditional trust models are based on modeling specific properties of agents, such as their expertise or reliability. Building those models requires too many prior interactions...
متن کاملTrust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008