Integral Matrices of Fixed Rank

نویسندگان

  • YONATAN R. KATZNELSON
  • William Adams
  • Y. R. KATZNELSON
چکیده

Asymptotic formula are derived for the number of n x m matrices of fixed rank k with rational integral coefficients that are contained in a Euclidean ball of radius T in R" *m . It is assumed that n > m > k > 1 are fixed, and the asymptotics are valid as T tends to infinity. The methods used are elementary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Scaling of Itzykson-zuber Integrals

ABSTRACT. We study asymptotics of the Itzykson-Zuber integrals in the scaling when one of the matrices has a small rank compared to the full rank. We show that the result is basically the same as in the case when one of the matrices has a fixed rank. In this way we extend the recent results of Guionnet and Maı̈da who showed that for a latter scaling the Itzykson-Zuber integral is given in terms ...

متن کامل

On the nil-clean matrix over a UFD

 In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix  over a UFD is nil-clean.

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Some rank equalities for finitely many tripotent matrices

‎A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations‎. ‎Moreover‎, ‎by using this equality and Theorems 8 and 10 in [Chen M‎. ‎and et al‎. ‎On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications‎, ‎The Scientific World Journal 2014 (2014)‎, ‎Article ID 702413‎, ‎7 page...

متن کامل

A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010