Slow spike frequency adaptation in neurons of the rat subthalamic nucleus.

نویسندگان

  • David Barraza
  • Hitoshi Kita
  • Charles J Wilson
چکیده

Neurons of the subthalamic nucleus (STN) are very sensitive to applied currents, firing at 10-20/s during spontaneous activity, but increasing to peak firing rates of 200/s with applied currents <0.5 nA. They receive a powerful tonic excitatory input from neurons in the cerebral cortex, yet in vivo maintain an irregular firing rate only slightly higher than the autonomous firing rate seen in slices. Spike frequency adaptation acts to normalize background firing rate by removing slow trends in firing due to changes in average input. Subthalamic neurons have been previously described as showing little spike frequency adaptation, but this was based on tests using brief stimuli. We applied long-duration depolarizing current steps to STN neurons in slices and observed a very strong spike frequency adaptation with a time constant of 20 s and that recovered at a similar rate. This adaptation could return firing to near-baseline levels during prolonged current pulses that transiently drove the cells at high rates. The current responsible for adaptation was studied in voltage clamp during and after high-frequency driving of the cell and was determined to be a slowly accumulating K(+) current. This current was independent of calcium or sodium entry and could be induced with long-duration voltage steps after blockade of action potentials. In addition to the adaptation current, driven firing produced slow inactivation of the persistent Na(+) current, which also contributed to the reduced excitability of STN cells during and after driven firing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons.

Subthalamic nucleus neurons exhibit reverse spike-frequency adaptation. This occurs only at firing rates of 20-50 spikes/s and higher. Over this same frequency range, there is an increase in the steady-state frequency-intensity (F-I) curve's slope (the secondary range). Specific blockade of high-voltage activated calcium currents reduced the F-I curve slope and reverse adaptation. Blockade of c...

متن کامل

Subthreshold Sodium Currents and Pacemaking of Subthalamic Neurons Modulation by Slow Inactivation

Neurons of the subthalamic nucleus (STN) are spontaneously active. By voltage clamping dissociated rat STN neurons with their own firing patterns, we found that pacemaking is driven by two kinds of subthreshold sodium current: a steady-state "persistent" sodium current and a dynamic "resurgent" sodium current, which promotes rapid firing by flowing immediately after a spike. These currents are ...

متن کامل

Is the purpose of reverse spike-frequency adaptation to enhance correlations? Focus on "a model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons".

Central neurons have the capacity of encoding stimulus by producing repetitive firing, with a firing frequency proportional to stimulus amplitude. This property is measured experimentally by computing the frequency-current (f-I) relation, which is linear in most cases (e.g., Connors and Gutnick, 1990). In some neurons, however, more complex f-I relations are observed. It is known since about 40...

متن کامل

Coherent spike-wave oscillations in the cortex and subthalamic nucleus of the freely moving rat.

The basal ganglia play a critical role in controlling seizures in animal models of idiopathic non-convulsive (absence) epilepsy. Inappropriate output from the substantia nigra pars reticulata (SNr) is known to exacerbate seizures, but the precise neuronal mechanisms underlying abnormal activity in SNr remain unclear. To test the hypothesis that cortical spike-wave oscillations, often considered...

متن کامل

Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro.

In this study, we characterize the electrophysiological and morphological properties of spiny principal neurons in the rat lateral amygdala using whole cell recordings in acute brain slices. These neurons exhibited a range of firing properties in response to prolonged current injection. Responses varied from cells that showed full spike frequency adaptation, spiking three to five times, to thos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 6  شماره 

صفحات  -

تاریخ انتشار 2009