The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging
نویسندگان
چکیده
We introduce the role of resampling and prediction (p) metrics for flexible discriminant modeling in neuroimaging, and highlight the importance of combining these with measurements of the reproducibility (r) of extracted brain activation patterns. Using the NPAIRS resampling framework we illustrate the use of (p, r) plots as a function of the size of the principal component subspace (Q) for a penalized discriminant analysis (PDA) to: optimize processing pipelines in functional magnetic resonance imaging (fMRI), and measure the global SNR (gSNR) and dimensionality of fMRI data sets. We show that the gSNRs of typical fMRI data sets cause the optimal Q for a PDA to often lie in a phase transition region between gSNR " 1 with large optimal Q versus gSNR # 1 with small optimal Q.
منابع مشابه
The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework.
We introduce a data-analysis framework and performance metrics for evaluating and optimizing the interaction between activation tasks, experimental designs, and the methodological choices and tools for data acquisition, preprocessing, data analysis, and extraction of statistical parametric maps (SPMs). Our NPAIRS (nonparametric prediction, activation, influence, and reproducibility resampling) ...
متن کاملSupport vector machines for temporal classification of block design fMRI data.
This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics...
متن کاملThe quantitative evaluation of functional neuroimaging experiments: mutual information learning curves.
Learning curves are presented as an unbiased means for evaluating the performance of models for neuroimaging data analysis. The learning curve measures the predictive performance in terms of the generalization or prediction error as a function of the number of independent examples (e.g., subjects) used to determine the parameters in the model. Cross-validation resampling is used to obtain unbia...
متن کاملParallel Workflows for Data-Driven Structural Equation Modeling in Functional Neuroimaging
We present a computational framework suitable for a data-driven approach to structural equation modeling (SEM) and describe several workflows for modeling functional magnetic resonance imaging (fMRI) data within this framework. The Computational Neuroscience Applications Research Infrastructure (CNARI) employs a high-level scripting language called Swift, which is capable of spawning hundreds o...
متن کاملMachine learning patterns for neuroimaging-genetic studies in the cloud
Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010