On 2-step, corank 2 nilpotent sub-Riemannian metrics

نویسندگان

  • Davide Barilari
  • Ugo V. Boscain
  • Jean-Paul Gauthier
چکیده

In this paper we study the nilpotent 2-step, corank 2 sub-Riemannian metrics that are nilpotent approximations of general sub-Riemannian metrics. We exhibit optimal syntheses for these problems. It turns out that in general the cut time is not equal to the first conjugate time but has a simple explicit expression. As a byproduct of this study we get some smoothness properties of the spherical Hausdorff measure in the case of a generic 6 dimensional, 2-step corank 2 sub-Riemannian metric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

un 2 00 4 On geodesic equivalence of Riemannian metrics and sub - Riemannian metrics on distributions of corank 1 Igor

The present paper is devoted to the problem of (local) geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on generic corank 1 distributions. Using Pontryagin Maximum Principle, we treat Riemannian and sub-Riemannian cases in an unified way and obtain some algebraic necessary conditions for the geodesic equivalence of (sub-)Riemannian metrics. In this way first we obtain a new...

متن کامل

On geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on distributions of corank 1

The present paper is devoted to the problem of (local) geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on generic corank 1 distributions. Using Pontryagin Maximum Principle, we treat Riemannian and sub-Riemannian cases in an unified way and obtain some algebraic necessary conditions for the geodesic equivalence of (sub-)Riemannian metrics. In this way first we obtain a new...

متن کامل

On the Spherical Hausdorff Measure in Step 2 Corank 2 Sub-Riemannian Geometry

In this paper, we consider generic corank 2 sub-Riemannian structures, and we show that the Spherical Hausdorf measure is always a C-smooth volume, which is in fact generically Csmooth out of a stratified subset of codimension 7. In particular, for rank 4, it is generically C 2 . This is the continuation of a previous work by the auhors. subjclass: 53C17, 49J15, 58C35

متن کامل

On the Hausdorff volume in sub-Riemannian geometry

For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume. We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C (and C on every curve)...

متن کامل

Jacobi Equations and Comparison Theorems for Corank 1 Sub-riemannian Structures with Symmetries

The Jacobi curve of an extremal of optimal control problem is a curve in a Lagrangian Grassmannian defined up to a symplectic transformation and containing all information about the solutions of the Jacobi equations along this extremal. In our previous works we constructed the canonical bundle of moving frames and the complete system of symplectic invariants, called curvature maps, for parametr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012