Robustness Analysis of Stochastic Programs with Joint Probabilistic Constraints

نویسنده

  • Jitka Dupacová
چکیده

Due to their frequently observed lack of convexity and/or smoothness, stochastic programs with joint probabilistic constraints have been considered as a hard type of constrained optimization problems, which are rather demanding both from the computational and robustness point of view. Dependence of the set of solutions on the probability distribution rules out the straightforward construction of the convexitybased global contamination bounds for the optimal value; at least local results for probabilistic programs of a special structure will be derived. Several alternative approaches to output analysis will be mentioned.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation and contamination bounds for probabilistic programs

Development of applicable robustness results for stochastic programs with probabilistic constraints is a demanding task. In this paper we follow the relatively simple ideas of output analysis based on the contamination technique and focus on construction of computable global bounds for the optimal value function. Dependence of the set of feasible solutions on the probability distribution rules ...

متن کامل

Metric regularity and quantitative stability in stochastic programs with probabilistic constraints

Necessary and su cient conditions for metric regularity of several joint probabilistic constraints are derived using recent results from nonsmooth analysis The conditions apply to fairly general nonconvex nonsmooth probabilistic constraints and extend earlier work in this direction Further a veri able su cient condition for quadratic growth of the objective function in a more speci c convex sto...

متن کامل

Metric regularity and quantitative stability in stochastic programs with probabilistic constraints

Introducing probabilistic constraints leads in general to nonconvex, nonsmooth or even discontinuous optimization models. In this paper, necessary and sufficient conditions for metric regularity of (several joint) probabilistic constraints are derived using recent results from nonsmooth analysis. The conditions apply to fairly general constraints and extend earlier work in this direction. Furth...

متن کامل

Stochastic geometric optimization with joint probabilistic constraints

This paper discusses geometric programs with joint probabilistic constraints. When the stochastic parameters are normally distributed and independent of each other, we approximate the problem by using piecewise polynomial functions with non-negative coefficients, and transform the approximation problem into a convex geometric program. We prove that this approximation method provides a lower bou...

متن کامل

A Counterexample to “Threshold Boolean form for joint probabilistic constraints with random technology matrix”

Recently, in the paper “Threshold Boolean form for joint probabilistic constraints with random technology matrix” (Math. Program. 147:391–427, 2014), Kogan and Lejeune proposed a set of mixed-integer programming formulations for probabilistically constrained stochastic programs having random constraint matrix and finite support distribution. We show that the proposed formulations do not in gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011