Non invariant zeta - function regularization in quantum Liouville theory 1
نویسنده
چکیده
We consider two possible zeta-function regularization schemes of quantum Liouville theory. One refers to the Laplace-Beltrami operator covariant under conformal transformations, the other to the naive non invariant operator. The first produces an invariant regularization which however does not give rise to a theory invariant under the full conformal group. The other is equivalent to the regularization proposed by Zamolodchikov and Zamolodchikov and gives rise to a theory invariant under the full conformal group. Work supported in part by M.I.U.R. Quantum Liouville theory has been the subject of intense study following different lines of attack. While the bootstrap [1, 2, 3, 4, 5] starts from the requirement of obtaining a theory invariant under the full infinite dimensional conformal group, the more conventional field theory techniques like the hamiltonian and the functional approaches depend in a critical way on the regularization scheme adopted. In the hamiltonian treatment [6] for the theory compactified on a circle the normal ordering regularization gives rise to a theory invariant under the full infinite dimensional conformal group. It came somewhat of a surprise that in the functional approach the regularization which realizes the full conformal invariance is the non invariant regularization introduced by Zamolodchikov and Zamolodchikov (ZZ) [4]. In [7] it was shown that such a regularization provides the correct quantum dimensions to the vertex functions on the sphere at least to two loops while in [8] it was shown that such a result holds true to all order perturbation theory on the pseudosphere. Here we consider the approach in which the determinant of a non covariant operator is computed in the framework of the zeta function regularization and show that this procedure is equivalent to the non invariant regularization of the Green function at coincident points proposed by ZZ [4], and extensively used in [7, 8, 9, 10]. For definiteness we shall refer to the case of sphere topology. The complete action is given by SL[φB, χ] = Scl[φB] + Sq[φB, χ] where [7] Scl[φB] = lim εn→0 R→∞ 1 b2 [ 1 8π ∫ Γ ( 1 2 (∂aφB) 2 + 8πμbeB )
منابع مشابه
Quantum Liouville Theory with Heavy Charges
We develop a general technique for solving the Riemann-Hilbert problem in presence of a number of ”heavy charges” and a small one thus providing the exact Green functions of Liouville theory for various non trivial backgrounds. The non invariant regularization suggested by Zamolodchikov and Zamolodchikov gives the correct quantum dimensions; this is shown to one loop in the sphere topology and ...
متن کاملSemiclassical and quantum Liouville theory on the sphere 1 Pietro
We solve the Riemann-Hilbert problem on the sphere topology for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincaré accessory parameters. In this way we compute the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the case of n finite charges and m infi...
متن کاملSemiclassical and quantum Liouville theory on the sphere 1
We solve the Riemann-Hilbert problem on the sphere topology for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincaré accessory parameters. In this way we compute the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the case of n finite charges and m infi...
متن کاملSemiclassical and quantum Liouville theory
We develop a functional integral approach to quantum Liouville field theory completely independent of the hamiltonian approach. To this end on the sphere topology we solve the Riemann-Hilbert problem for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincaré accessory parameters. This provides the semiclassical four point vertex functio...
متن کاملQuantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces
Using Polyakov’s functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function 〈X〉 and correlation functions with the stress-energy tensor components 〈n i=1 T (zi ) ∏l k=1 T̄ (w̄k)X〉, we describe Feynman rules in the background field formalism by expan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006