Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme
نویسندگان
چکیده
Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na+ as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M+ ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[13C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li+ to Cs+, PFL-AE activity sharply maximizes at K+, with NH4+ closely matching the efficacy of K+. PFL-AE is thus a type I M+-activated enzyme whose M+ controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.
منابع مشابه
Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme.
Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G(734) of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of e...
متن کاملPost-translational activation introduces a free radical into pyruvate formate-lyase.
Pyruvate formate-lyase (formate acetyltransferase; EC 2.3.1.54) of Escherichia coli cells is post-translationally interconverted between inactive and active forms. Conversion of the inactive to the active form is catalyzed by an Fe2+-dependent activating enzyme and requires adenosylmethionine and dihydroflavodoxin. This process is shown here to introduce a paramagnetic moiety into the structure...
متن کاملStructural studies of the interaction of S-adenosylmethionine with the [4Fe-4S] clusters in biotin synthase and pyruvate formate-lyase activating enzyme.
The diverse reactions catalyzed by the radical-SAM superfamily of enzymes are thought to proceed via a set of common mechanistic steps, key among which is the reductive cleavage of S-adenosyl-L-methionine (SAM) by a reduced [4Fe-4S] cluster to generate an intermediate deoxyadenosyl radical. A number of spectroscopic studies have provided evidence that SAM interacts directly with the [4Fe-4S] cl...
متن کاملConversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism
Pyruvate formate-lyase activating enzyme utilizes an iron-sulfur cluster and S-adenosylmethionine to generate the catalytically essential glycyl radical on pyruvate formate-lyase. Variable-temperature (4.2200 K) and variable-field (0.05-8 T) Mössbauer spectroscopy has been used to characterize the iron-sulfur clusters present in anaerobically isolated pyruvate formate-lyase activating enzyme an...
متن کاملCoordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study.
Pyruvate formate-lyase activating enzyme (PFL-AE) generates the catalytically essential glycyl radical of PFL. It is a member of the so-called "radical-SAM superfamily" of enzymes that use a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet or SAM) to catalyze diverse radical-mediated reactions. Evidence suggests that this class of enzymes operate by common initial steps involving the generatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 139 شماره
صفحات -
تاریخ انتشار 2017