Application of kernel-based stochastic gradient algorithms to option pricing

نویسندگان

  • Kengy Barty
  • Pierre Girardeau
  • Cyrille Strugarek
  • Jean-Sébastien Roy
چکیده

We present an algorithm for American option pricing based on stochastic approximation techniques. Option pricing algorithms generally involve some sort of discretization, either on the state space or on the underlying functional space. Our work, which is an application of a more general perturbed gradient algorithm introduced recently by the authors, consists in approximating the value functions of the classical dynamic programming equation at each time step by a linear combination of kernels. The so-called kernel-based stochastic gradient algorithm avoids any a priori discretization, besides the discretization of time. Thus, it converges toward the optimum of the non-discretized Bermudan option pricing problem. We present a comprehensive methodology to implement efficiently this algorithm, including discussions on the numerical tools used, like the Fast Gauss Transform, or Brownian bridge. We also compare our results to some existing methods, and provide empirical statistical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Pricing of European Put Option with Stochastic Volatility

In this paper, European option pricing with stochastic volatility forecasted by well known GARCH model is discussed in context of Indian financial market. The data of Reliance Ltd. stockprice from 3/01/2000 to 30/03/2009 is used and resulting partial differential equation is solved byCrank-Nicolson finite difference method for various interest rates and maturity in time. Thesensitivity measures...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Asset pricing under information with stochastic volatility

Based on a general specification of the asset specific pricing kernel, we develop a pricing model using an information process with stochastic volatility. We derive analytical asset and option pricing formulas. The asset prices in this rational expectations model exhibit crash-like, strong downward movements. The resulting option pricing formula is consistent with the strong negative skewness a...

متن کامل

A Control Variate Method to Evaluate Option Prices under Multi-factor Stochastic Volatility Models

We propose a control variate method with multiple controls to effectively reduce variances of Monte Carlo simulations for pricing European options under multifactor stochastic volatility models. Based on an application of Ito’s formula, the option price is decomposed by its discounted payoff and stochastic integrals with the appearance of gradients of the unknown option price with respect to st...

متن کامل

Stochastic Models for Pricing Weather Derivatives using Constant Risk Premium

‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing  weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Monte Carlo Meth. and Appl.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008